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Abstract. Quasiperiodic self-similar chains generated by substitutions (i.e. deterministic
concatenation rules) and their diffraction spectra are analysed in a systematic fashion,
from the viewpoint of the superspace formalism. A substitution acting on n objects
generates quasiperiodic chains if, and only if, the associated substitution matrix fulfils
two arithmetic conditions (Pisot property and unit determinant). The structures thus
obtained can be alternatively built as sections of periodic patterns in an n-dimensional
superspace, which are regular repetitions of an atomic surface. We derive a general
algorithm to construct this atomic surface. It is a compact set of the (n — 1)-dimensionat
internal space, which is a unit cell for a lattice of translations. The atomic surface is
neveriheless not necessarily connected, and its boundary is generically an anisotropic self-
similar fractal. The dimension dg of this boundary is shown to govern the anomalously
slow fall-off of the intensities of Bragp diffractions, and therefore to influence physical
properties.

1. Introduction

There are two well known approaches to the construction of quasiperiodic tilings.
Historically, the first aperiodic tilings of the plane, such as those of Penrose and
Ammann [1], were described by ‘inflation rules’, which were applied iteratively to
the tiles. The one-dimensional Fibonacci chain provides a simple illustration of
this procedure, alternatively called ‘substitution’ or ‘concatenation’. One is given
two letters, A and B, and one substitutes AB for A, and A for B. One
then associates bond lengths ¢4, ¢5, 1o each letter type. The second approach,
namely the cut-and-project or section method, describes a two- or three-dimensional
tiling by means of a higher-dimensional space. As a matter of fact, this way of
visualising quasiperiodic structures in ‘superspace’ had already been introduced for
incommensurate structures [2]. It is indeed both natural and economical to view a
quasiperiodic structure in d-dimensional ‘physical space’ as the section of a periodic
object in an n-dimensional superspace, with » > d. For instance, when dealing with a
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quasiperiodic tiling, it is advantageous to book-keep vertex positions as sets of integer
coordinates in superspace.

These two approaches are quite different. Indeed, the nature of the diffraction
spectrum, ie. of the Fourier transform, of the aperiodic structures obtained with
the first one is unknown a priori, whereas, from its very definition, the second one
produces quasiperiodic objects, characterized the fact that their Fourier transform
consists of Bragg peaks, i.e. delta functions, supported by a module over the integers,
spanned by n basis vectors in reciprocal space. Many systems share this property [3],
among which there are incommensurate modulated crystal phases, incommensurate
composite (misfit) structures, helicoidal magnetic structures, and quasicrystals.

Taking some distance, the following question is to be raised. Whereas the second
method automatically generates quasiperiodic objects, one is led to wonder what
kind of Fourier spectrum corresponds to structures generated by substitution rules,
and, more generally, what is the relationship between long-range order and the self-
similarity implied by inflation or substitution rules. It is worth noticing the difference
between these two ways of characterizing ‘regularity’ or ‘symmetry’. The long-range
order coded in a diffraction spectrum corresponds to regularity properties with respect
to translations, whereas inflation symmetry is linked with discrete dilatations. Both
are ‘repetitions’, but not of the same kind. Bombieri and Taylor [4] produced the
following criterion, in the case of one-dimensional structures: whenever a substitution
has the Pisot property, defined below, the associated structure possesscs Bragg peaks.
Conversely, non-Pisot structures usually exhibit complex diffraction spectra [5-9] with
singular scattering peaks, and multifractal scaling properties.

Let us restrict the analysis to Pisot structures, and thus to Bragg diffraction spectra.
Under the extra hypothesis, again to be discussed below, that the substitution matrix
has unit determinant, a quasiperiodic object is generated, which can be embedded in
a transversally bounded strip of a higher-dimensional superspace. In other words, it
is possible to generate the structure by a section method, from a periodic array of
bounded ‘atomic surfaces’. We recall that a quasiperiodic structure in d dimensions
may be obtained as the intersection of a d-dimensional physical space VE with a
periodic structure in an n-dimensional superspace, where n > d is the rank of
the Fourier module mentioned above {2,10,11]). If A is the lattice of periods of
the superspace structure, and if A* denotes its reciprocal lattice, then the Fourier
module of the structure is some projection of A* onto VE [3]. For quasiperiodic
tilings, the superspace structure is a periodic array of atomic surfaces, which are
bounded (n — d)-dimensional domains, included in ‘internal space’ V!, which is
complementary to physical space [12-14]. Moreover, in the case of substitutional
structures, n is generically equal to the number of ‘letters’ involved by the substitution
rules, e.g. n = 2 for the Fibonacci chain. In other words, substitutional chains can be
viewed as incommensurately modulated displacive structures, with a periodic chain as
basic structure. Finally, under certain conditions on the bond lengths, to be specified
later on, the existence of a substitution leads to an exact scale invariance of the
corresponding quasiperiodic structures; this geometrical self-similarity plays a role in
the study of their physical properties [15].

At least in one dimension, there are infinitely many quasiperiodic structures, built
from substitutions. One may therefore wonder what is the superspace description
of all those structures (as recalled above, this is the natural framework to describe
them). The answer could have been simple, namely that every quasiperiodic structure
corresponds to regular atomic surfaces. We soon discovered, to our surprise, that
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a generic one-dimensional quasiperiodic substitutional structure leads to a complex
atomic surface, with a fractal boundary. We should mention that fractal atomic
surfaces had already been mentioned for some instances of tilings [16].

The description of this phenomenon, and its full quantitative explanation,
represent the aim of this paper. Both the ideas and the formalism exposed below will
be extended to tilings of the plane in a separate publication. Since this work comes
as the latest of a long list, we chose 10 write it in a self-contained way, in order
for the reader to avoid the tedious task of searching for definitions through previous
publications. Hence some parts contain material already published elsewhere; we also
want to apologize for the unavoidable numerous self-quotations.

This paper is organised as follows. Section 2 is devoted to a description of
chains generated by binary substitutions. We give a systematic account, with some
generalization, of the main outcomes of previous works, thus producing a self-
contained summary of concepis and notations. section 3 contains the heart of
the paper, namely the description of how to construct the atomic surface of any
quasiperiodic substitutional chain, taking the binary example for definiteness. In
section 4 we study several examples of binary chains. Section 5 is devoted to a
generalization of previous results to substitutions acting on more than two letters,
with examples of ternary chains. A brief conclusion is presented in section 6.
Two appendices contain more technical material, namely a derivation of the Fourier
module in the general case, and the investigation of a binary Cantor function, which
helps understanding the properties of atomic surfaces with fractal boundaries.

2. Binary chains: general formalism

In this section, we present a self-contained overview of general results concerning the
structures generated by binary substitutions, their geometrical characteristics, and the
nature of their diffraction spectrum.

2.1, Binary substitutions and structures

A binary substitution ¢ is formally defined by its action on an alphabet A = {4, B},
which consists of two letters. The substitution replaces each letter by a finite word,
of the form

A—o(A)=a;...e4,4
B—*J(BJ=bl"‘b'y+6'

2.1

In the expression (2.1), each a; or b, stands for a letter, which is either 4 or B,
and «, 3, v, and § are four positive integers, which denote the numbers of letters of
each type in the words o(.A) and o(B). It is useful to recast these numbers in the
form of a 2 x 2 integer matrix M, called the substitution matrix associated with o,
and defined as follows:

M=(¢ ¥)= number of As in 6{ A) number of As in o(B) 22)
“\ B 6/ \ numberof Bsin o(A) numberof Bsin ¢(B),; ’ "
The substitution matrix therefore only describes the contents of the words ¢{A) and

o( B) in letters of each type, irrespective of the order in which these letters occur. In
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particular, two substitutions that only differ by the ordering of letters have identical
matrices.

We define the sequence of words A, and B,, obtained by acting repeatedly with
the substitution & on the letters A and B:

A, =o"(A) B,=0o"(B). (23)

The substitution matrix M permits the evaluation of the total numbers of letters
contained in the words A, and B,, denoted respectively v and vEF. We have

indeed
A A
(”rgl ) =M (”5) @24)
Vas Vn

and therefore

() =00 ()

where MT denotes the transpose of the matrix M.

In order to work out the result {2.5) in closed form, we have to determine the
spectrum of the substitution matrix M, which will play a central role throughout the
following, Its characteristic polynomial reads

P(A)=det(Al- M)=A2—sh+p= (A=A (A= A,). (2.6)

In this expression,

s=urM=a+é p=detM = ab - Gy 2.7)
are the invariants of the substitution matrix M, and
A1='—9—'+-—2\~/-_A- )\2=s;2\/—-—_£ with A =s?—dp=(a—8>2+48
(2.8)
are its eigenvalues.
We also define a sequence of integers @, through the recursion formula
tI)'n = S‘I)n.-—l - pq}n—Z (2'9)

with ®; =0, &, = 1, and where s and p are the invariants defined in (2.7). We thus
have &, = 5, ®; = s? — p, and s0 on.

These integers and the eigenvalues of the matrix M are related through the
identities

AP — AR
@, = 7\11—_).2_ 1= Qg1 — A%, A= Pnp =M%, (2-10)

which allow us to evaluate the successive powers of the substitution matrix in closed
form. We thus obtain

R q)n-i-l - 6(1)11. 'Tq)n
M* = ( ﬁq)n (I)n-l-l - a(I)n) ' (2.11)
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The total letter numbers of the words A, and B, can then be derived from (2.5)
as

vi=9,,+(8-86)2, vl =0, ,+(v-a)®,. (2.12)

We assume in the following that o(A) begins with the letter A, and that the
substitution matrix M is primitive [17). This means that all entries of MY are strictly
positive integers, for some integer N > 1. Under these conditions, the sequence
of words A, converges toward a semi-infinite sequence £ = o*(A), such that
¥ = o(X). We have thus obtained an infinite abstract sequence which is self-similar.

Under the above conditions, the Perron-Frobenius theorem asserts that the
eigenvalue with larger modulus, say A,, is real, positive, and larger than one (see
e.g. [18]). In the binary case under consideration, A, is aiso real. The right eigenvector
v, of M, associated with X,, reads

A
“= (%)

A _ ¥ __M-d pP=_MTe B )
Mty-—a M+8-0 Mty—a  A+B-8

(2.13)

P

These components, which are positive and normalized so that p# + p? = 1, are the
frequencies, or densities, of the letters A and B in the infinite sequence .

Before we proceed, let us exemplify the above definitions with the simple case of
the Fibonacci substitution

A— AB 2.14)
Ogp . .
1B - A
The associated substitution matrix reads
11

M= ( 1 0) (2.15)
and its eigenvalues are A\, = 7, A, = —r~1, where

r= 1"'2‘/5 = 1.618034 (2.16)

is the golden mean. The integers ®, coincide with the Fibonacci numbers F),,
defined by the following recursion relation:

F,=F,_,+F,_, F,=0 F=1. (2.17)

There are several ways of associating a geometrical structure with an infinite
abstract sequence such as . One simple choice [5-7,9] consists in viewing A and
B as beads with two different sizes, which we string along a thread in an ordered
fashion. More precisely, we associate two arbitrary (positive) bond lengths ¢4, £ to
the letters, and we place pointlike atoms on a line, at abscissas x,, such that z, =0,
and the &th bond length
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is chosen according to £, = £# (respectively, £, = £F), if the kth letter of the
sequence L is an A (respectively, a B). As a consequence, the mean interatomic
distance, or inverse density, of the structure reads

a= H Tk = pted + pBEB . (2.19)
k—oa k
Let us consider the words A, and B_, defined in (2.3), and denote the lengths
of the associated structures by £2 and £2. These quantities obey the same linear
recursion relations (2.4) as the numbers of letters. We have therefore

A =(®,,, —60,)0"+ 2,68 B =y, 04+ (D, ~a®, )5, (220

The dimensionless ratio £4 /£8 of both bond lengths is an arbitrary parameter.
There is nevertheless a natural choice for this quantity, which will be given a simple
geometrical interpretation in the next section. For the time being, consider the ratios
£, between the total lengths of the words A, and B,

EA
b= 75 - (2.21)

n

We have the following mapping T, between successive ratios:

_ A
Enpr = T,(6n) = S22 5 - @22)

When the generation label n becomes large, the ratios £, converge toward the
attractive fixed point £, of this map, which reads

B _AM=$
1~ v

In the following, we assume that the initial ratio of both bond lengths assumes its
fixed-point value

8= 78 =4&- (2.24)

Under this condition, the bond lengths and the atomic spacing are related through

M+ B-6 Mtr-a
A =M B __ M :
= a £ = a (2.25)
and the total lengths of the words A and B, read
22 = AP A L2 = AP 2. (2.26)

We end up by noticing that the fixed-point condition (2.24) amounts to requiring
that the bond lengths are proportional to the components of the left Perron-Frobenius
eigenvector w, of the substitution matrix M, associated with the eigenvalue A,.
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2.2. Superspace representation

An alternative way of viewing the substitutional structure defined above consists in
embedding it into a two-dimensional superspace. Let {e,, e,} denote a basis of a
lattice in two dimensions, with no metric structure a priori. We define an infinite
sequence of lattice points X, through X, = 0, and so that the vector difference

Lk=Xk_Xk—1 k?l (2.27)

is chosen according to L; = e, (respectively, L, = e;), if the kth bond of the
structure has length ¢4 (respectively, £8), ie. if the kth letter of the sequence ¥ is
an A (respectively, a B). We have therefore

X, = mA(k)e, + mE(k)e, (2.28)

where the integers m#(k) and m® (k) are respectively the numbers of letters A and
B among the first & letters of the sequence X. These numbers obey the evident sum
rule

mA(k) + mP(k) = k. (2.29)

We thus obtain an infinite staircase-shaped broken line, drawn on the lattice,
which escapes to infinity along the mean direction of the vector

vy = kl;u’lgo -}%5- = pte; + pPe, (2.30)

coinciding with the definition (2.13).

Let us call physical space, and denote by V'E, the real linear space spanned by the
vector »;. VE is thus the eigenspace of the substitution matrix M, associated with the
Perron-Frobenius eigenvalue A;. Along the same lines, we call internal space, and we
denote by V1, the eigenspace of M, associated with the second eigenvalue X,. This
linear space is spanned by a vector v, given by

A
- (7 : At E- X B_M—a-f
vz—(nB) with Nt o= A=y no = S, (2.31)

We define the dimensionless fluctuations u; of the atomic abscissas z, with
respect to the average lattice of the structure, as follows:

z, = mA(k)eA + mZ (k)P = ka+ (84 - 5y, . (2.32)
The second of these equalities, together with the sum rule (2.29), yields
mA(k) = kp? + u, mZ (k) = kp? —u,. (2.33)

We denote by XF and X! the projections of the vector X, onto physical and
internal spaces, defined by

X, =XEv + X} v,. (2.34)
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These quantities can be expressed in terms of the fluctuations w«; as follows:

o+ fB—y-4

XE=k+
s }‘I_AZ

uy Xi=u,, (2.35)
The second of these equalities is a consequence of the choice of normalization of
the vector v,, made in (2.31). The first of them allows us to check that the atomic
abscissas z,, are proportional to the projections X¥ if, and only if, the ratio between
both bond lengths £4 and £Z assumes its fixed-point value, determined in (2.23). This
is indeed the condition under which the substitution acts on the physical structure
exactly as a dilatation by the scaling factor X, so that the structure is strictly self-
similar, and can be viewed as a linear projection of the staircase-shaped broken line
onto the physical space VE,

2.3. Extension in internal space

The result (2.35) shows that the internal coordinates X} of the atoms coincide with
the fluctuations u, of the structure with respect to its average lattice. This section is
devoted to the asymptotic long-distance behaviour of these fAuctuations (k& — oo).

In order to get an estimate of the fluctuations, let us focus our attention on the
finite samples of the structure associated with the words A, and B,, introduced
in (2.3). The total letter numbers and the lengths of these pieces have been
determined in (2.12) and (2.20), respectively, in terms of the integers ®@,,.

The associated fluctuations, defined in analogy with (2.32), read

uA=Eﬁ_Vfa= 8 AR uB=ef'_Vfa'___ru ki AR
T gA_gB T A4 pB-6"2 T gA_¢B Mty-e"?°

(2.36)

Two cases have therefore to be considered, according to the magnitude of |A,| with
respect to unity. Whenever we have |A,| < 1, we shall say that the substitution o, and
the associated matrix M, have the Pisot-Vijayaraghavan property, called Pisot property
for short in the following,

This term originates in the following definition. A Pisoi—Vijayaraghavan number
[19, 20] is a real number = > 1, which is an algebraic integer of any degree m 2 1,
ie. the solution of a polynomial equation of the form Q(z) = «™ + a,,_;z™ ! +
-+ 4 ay = 0, where the a,, are integers, such that all its conjugates, namely the other
(m — 1) real or complex roots of the equation Q(z) = 0, are smaller than unity
in modulus, The above definition of a Pisot substitution & amounts to saying that
the Perron-Frobenius eigenvalue A, is a Pisot number, under the condition that the
characteristic polynomial P(A), evaluated in (2.6), is irreducible over the integers.

(i) If the substitution has the Pisot property (|,| < 1), the estimate (2.36) shows
that the fluctuations associated with the words A, and B, go to zero exponentially
with n. It turns out that the fluctuations u, are boundcd, for all values of the atomic
label k.

(ii) If the substitution does not have the Pisot property (|A,] > 1), the fluctuations
of the words A, and B, diverge as A}, whercas the system sizes diverge as AT. This
observation suggests that the fluctuations u; obey the following power law:

. In |,
~ 6 —_ 2
Uy ~ Kk with (= oA,

. (2.37)
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The ‘wandering exponent’ ¢ is such that 0 < { < 1. The above estimate has been
turned into a rigorous argument [17], which yiclds the more accurate asymptotic
scaling law

~ kS M)
Up & k' G (]n )\1 (2-38)
where the amplitude G is a periodic function of its argument z == Ink/ In A;, with
unit period. The oscillatory amplitude G is generically a fractal function, which is
continuous, but nowhere differentiable.
In the marginal case where A, = +1, the fluctuations diverge only logarithmically.
Examples of this situation have been examined in [5,6,21].

2.4. Nature of the diffraction spectrum

We show in this section that the nature of the diffraction spectrum of a substitutional
structure is also dictated by the eigenvalues of the associated substitution matrix, and
especially by its Pisot character, The diffraction spectrum of a structure is the Fourier
transform of some mass distribution living on the structure. For the sake of simplicity,
we choose to put identical pointlike atoms at the abscissas {z, }.

In order to investigate the associated diffraction spectrum, we consider the Fourier
amplitudes corresponding to the finite words A, and B,, defined as

GHQY= Y e GE(Q)= ) eiom (2:39)

TREAR TREBR

where @ is an arbitrary one-dimensional wavevector. These Fourier amplitudes
obey recursion formulae, which express the iterative definition (2.3) of the words
themselves. Taking the example of the Fibonacci substitution (2.14) for definiteness,
we obtain

Gi(Q) = GR(Q) + exp (-iQ27) GF(Q) Gru(Q) = GR(Q). (2.40)

In these equations, the phase factor involves the lengths of the words A_, which
have been evaluated in (2.20). The formulae (2.40), with the initial conditions
G Q) = exp(—~iQe4), GF(Q) = exp(—iQEB), determine entirely the Fourier
amplitudes. They allow therefore the evaluation of the structure factor, or Fourier
intensity, S(Q), associated with the infinite structure, which is formally defined as
the limit

2 2
5(Q) = lim J%L = lim m_nglL (2.41)

— o0
n—0Q T =— n

It turns out that the Fourier spectrum of a substitutional structure can be a
very intricate object, and that the structure factor S(Q) is in general not a smooth
function, but should rather be viewed as a measure, or a generalized function, or
distribution. We will come back to this point at the end of this section.

In the sequel we shall be essentially interested in the presence, or the absence,
of Bragg peaks, i.e. delta functions, in diffraction spectra. We recall that there is a
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Bragg peak at the wavevector @, if the Fourier amplitudes grow proportionally to
the numbers of atoms in the samples, i.e.

GHQ)~C(Qvy  GRQY=C(Q)r, n— (2.42)

where the amplitude C(Q,) is a complex quantity. Equation (2.42) expresses the
fact that a macroscopic fraction of the atoms diffract in a coherent way at the
wavevector Q.

We are thus led to investigate under which conditions the amplitudes given by the
recursion relations (2.40) grow according to the law (2.42). Firstly, we observe that
this maximal growth takes place for the value @ = 0 of the wavevector, where the
relations (2.40) are equivalent to the letter counting equations (2.4).

It can be argued that @, is a Bragg wavevector if, and only if, all the phase factors
which show up in the recursion relations (2.40) go to unity in the n — oo limit, so
that the growth is similar to that of the ¢ = 0 case. This argument has been made
rigorous by Bombieri and Thylor [4].

In the example of the Fibonacci sequence, the phase factor can be expressed in
terms of the Fibonacci numbers, defined in (2.17), and the above condition reads

%TUE F,—0  modl, (2.43)

It can be shown in an elementary way (see e.g. [6]) that this condition is fulfilled if,
and only if, the wavevector takes the form

Que _
S =J+ K7 (2.44)

where J and XK are two arbitrary integers. Hence the diffraction spectrum of
the Fibonacci chain contains Bragg peaks for the values of the wavevector given
by (2.44). Those values form a Z-module with rank two, i.e. the set of integer linear
combinations of two elementary wavevectors, 2= /a and 277 /a. As a matter of fact,
the whole intensity is concentrated on these Bragg peaks. In other words, we have
recovered the well known fact that the Fibonacci chain is quasiperiodic.

Let us now consider an arbitrary substitution o. The condition that the phase
factors converge to unity yields equations of the type

zA} -0  mod 1 (2.45)

where X, is the Perron-Frobenius eigenvalue of the substitution matrix. A theorem
by Pisot [19]—see also [20] for a detailed exposition—asserts that the limit (2.45)
holds true if, and only if

(i) A, is a Pisot number, in the sense defined above,

(ii) = belongs to some Z-module AM(A,), related to A, in a known fashion.

The general case of quasiperiodic substitutions acting on any finite number
of letters is considered in appendix A, where a complete characterization of the
associated Fourier module is given. In the present case of binary substitutions
and quadratic algebraic integers, we can give an elementary derivation of the
module M(},), following the approach described in [6]. Consider a binary
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substitution o with the Pisot property. We can recast the phases which enter the
evaluation of the Fourier transform of the structure as follows:

Qin ~ Qa(A + 8- 82, QLZ = Qa(M +v-)®,  (246)

where the integers ®  have been defined in (2.9), and where exponentially small
terms of order A7 have been neglected. We are thus led to study the equation

y®, —0 mod 1. (2.47)
Along the lines of [6], we set
y®, = a, + 4, (2.48)

with a,, integer, and |§,| < 1, so that (2.47) is equivalent to §, — 0. The recursion
relation (2.9) then implies

e, —sa, +pe,_,=-6 +86,_—pb,..—0. (2.49)

Since the left side of this equation is an integer, it vanishes identically for » large
enough. We thus have

G,—S8a, 1+ pa, ;=0 nzN+2 (2.50)

for some finite integer N. This last equation can be solved in a closed form, and
yields

anpp = anProy + (ang —san)P; k>0. (2.51)

By inserting this result back into (2.48), and taking the k£ — oo limit, we obtain

= 21 _ Pay (2 52)
Ea

We have thus shown that & real number y obeys (2.47} if, and only if, it belongs
to the Z-module

M) = Z{1,1/X,1/)3,...} (2.53)

generated by all the negative powers of the Perron-Frobenius eigenvalue. Two
different situations have therefore to be considered:

2.4.1. The quasiperiodic case. detM = £1. In this case, (2.10} implies
127 = (@0~ N D,) . (2.54)
This shows that all the negative powers of A; are integer-linear combinations of 1

and J; itself, so that the module defined in (2.53) coincides with the module over
the integers generated by 1 and At M()) = Z{1,},}.
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The diffraction spectrum has therefore Bragg peaks for the wavevectors @ such
that both phases evaluated in (2.46) correspond to y values of the form y = J+ /A,
These conditions are met if, and only if

w=pF=1-p* (2.56)

where the frequencies o and p? have been defined in (2.13). The Bragg peaks
of the diffraction spectrum are thus located at values of the reduced wavevector
@ = Qa/(27) which are integer-linear combinations of the frequencies p# and p?
In more technical terms, they are supported by a Z-module with rank two, called the
Fourier module. The basis {1, p?} of the Fourier module has been chosen in writing
(2.55) for the sake of further convenience, We could have chosen other bases as well,
such as {1,p4} or {p*, pF}. The result (2.55) generalizes (2.44), obtained in the
case of the Fibonacci chain.

For further reference, let us give the formal expressions of the Fourier amplitude
G( Q) and of the Fourier intensity S{Q) of the infinite structure

Q) = ZCMN ( M- Nw)
(2.57)
5(Q) = Z ICunl 5( - M- Nw)

where the complex Fourier coefficients Cyy » are defined as in (2.42).

24.2. The limit-quasiperiodic case. detM # 1. Under this condition, all the
generators of the module M(A,), given in (2.53), are linearly independent over
the integers. As a consequence, the Bragg peaks of the diffraction spectrum are
supported by a Fourier module which has a countable infinity of generatots over the
integers. The term ‘limit-quasiperiodic’ for such a structure has been proposed [22],
in analogy with the case of limit-periodic functions, which have a Fourier module
with an infinity of generators given by an integer geometrical progression, such as
M(b) = {1,1/b,1/b?,.. .}, for some integer base b > 2.

2.5. Summary

To close this section, let us summarize the main results concerning the relationship
between the arithmetic properties of a binary substitution o, and geometrical
properties of the associated structure. It turns out that three different cases have
to be considered.

Let us emphasize that we have restricted ourselves to substitutions with irreducible
characteristic polynomials. Otherwise the situation is more complicated, so that the
classification given below has several kinds of exceptions. Interesting examples of
such exceptions can be found among the substitutions with constant length [23]. The
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associated sequences can also be generated by automata, such as e.g. the Thue-Morse
sequence, or the period-doubling sequence.

(a) The non-Pisot case (|A,] > 1): the extension of the structure in internal
space, or equivalently its fluctuations in physical space, diverge as a power law of the
system size, with a wandering exponent { given in (2.37). The diffraction spectrum
does not contain any Bragg peak, except at the origin @ = 0 of reciprocal space.
There is strong evidence in favour of a singular continuous Fourier intensity measure,
in particular from multifractal analysis [7]. The diffraction spectrum usually exhibits
a complex pattern of strong singular scattering peaks [9], which possess a simple
labelling scheme only in a few specific cases [5,6].

(b) The limit-quasiperiodic case (|A;| < 1, detM = A A, $ £1): the structure
exhibits bounded fluctuations with respect to its average lattice, and a bounded
extension in internal space. The discrete component of its diffraction spectrum
consists in Bragg peaks, supported by a Fourier module with a countable infinity of
generators over the integers, related to the negative powers of ). It is most probable
that the whole intensity is generically concentrated on this discrete component, so that
the structure is almost-periodic, and more precisely ‘limit-quasiperiodic’ [22]. It could
therefore be viewed as a section of a periodic object in some infinite-dimensional
(functional) space.

(c) The quasiperiodic case (detM = A; A, = £1): in this last case, the structure
still has bounded fluctuations with respect to its average lattice, and a bounded
extension in internal space. The discrete component of its diffraction spectrum
consists in Bragg peaks, supported by a Fourier module with rank two, given in 2.55).
The whole intensity is concentrated on this discrete component, so that the structure
is quasiperiodic. It can therefore be viewed as a section of a periodic object in a
two-dimensional superspace, which is the periodic repetition of a bounded atomic
surface. Such a description is the central object of the next sections.

3. Binary chains: atomic surfaces

3.1. Definitions

In this section, we study from a general viewpoint the atomic surfaces associated with
quasiperiodic binary substitutions. Let o be such a substitution. We use the notations
introduced in section 2, and investigate first the sequence {¢,}, defined as

€ = Up = Up_] (3.1)
where the dimensionless fluctuations u, have been defined in (2.32). It follows

from (3.1) that the ¢, assume only two values, namely ¢, = e (respectively,
€, = €7), if the kth letter of the sequence ¥ is an A (respectively, a B), with
et =p"=w e =—pt=w-1, (3.2)

Let us consider the Fourier amplitude of the sequence {¢,; }, defined as

)= ¢ " (3.3)
k
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where we have used a lower-case letter for the wavevector g, in order to distinguish
the Fourier transform of the abstract sequence from that of the associated atomic
structure, considered in section 2. One can show, along the lines of the previous
section, that the Fourier amplitude é(g) consists of Bragg peaks, at wavevectors
given by (2.55), with ¢ replacing the product Qe. We thus have

=S ey 6(5(1;—M—Nw) . (3.4)
M,N

The Fourier coefficients depend only on N, since é(q) is a 2r-periodic (generalized)
function of g, whence the notation c,. Moreover, we have c_, = c’y, where the
star denotes complex conjugation, and

K
c()=(5k>=}{liinm?];;'z€k=PA€A+pBEB =0. (3.5)
k=1

In this last equation, we have introduced the notation {A;) for the spatial average of
a sequence {A,} over a sample whose length goes to infinity. This quantity is called
a Cesaro average.

The sum over the integer N in (3.4) can be interpreted as the Fourier series of
a periodic function. We thus obtain

& = f(kw) (3.6)

where

+oo
fO)= 3 ey (3.7)

N=—os

is a real periodic function of its argument 8, with unit period. This result means that
the binary sequence {¢, }, which codes for the letters in the sequence I, is given by
the restriction of a periodic function f(@) of a real variable, to the multiples 8 = kw
of the ‘frequency’ w.

The Fourier coefficients {c, } only depend on the substitution under consider-
ation. One of the goals of the present study is to obtain estimates concerning the
decay of the ¢, when the label N of the harmonics gets large. It is worth mentioning
the Parseval identity

+o0
2 lenP=(eh) = pA(e*) + pP(cP) = w(l ~w) (38)

N=—00

which will be used in the following.
Let us now examine the sequence {u, } of the fluctuations of the atomic positions.
By Fourier transforming (3.1), we obtain

uy, = g(kw) (39)
where g is still a periodic function, with unit period, given by

+ 00
g(6)= > dye™mnNe, (3.10)

N==o0
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The functions f and g are related through

F(6) = 9(6) — g(6 —~w). G11)
Equivalently, in terms of their Fourier coefficients d,; and ¢,;, we have
ey = (1—e TiNeyg N#0 (3.12)

whereas d; is an irrelevant constant.

The central result (3.9) shows that the fluctuations of the atomic positions with

respect to the average lattice are given by the restriction to the multiples of w of a
bounded and 1-periodic function g(8), called the modulation, or hull function.
- In the present context, the hull function has a remarkable property. Let us adopt
again the initial condition =, = 0, introduced in last section, and focus our attention
on the kth atom of the structure. The result (2.33) implies that the difference between
u; and kw is an integer. This observation leads to the following form of the hull
function

g(6) = 6 + m(8) (3.13)
where m(#) is an integer-valued function, so that
m{841)=m(8)—1. (3.14)

Consider now the hull function over one period, say 0 € & < 1. Since the
fluctuations of the atomic abscissas are bounded, the integer-valued function m(@)
assumes a finite number of values, in a range m;, < m(8) < my,,. The graph of
the huil function g{#)} over one period is therefore contained in a finite number of
parailel straight segments with unit slope.

Let S denote the set of the values taken by the hull function g(#}. The above
observation allows us to reconstruct the hull function itself from the very set S, by
folding it up modulo its unit period.

It turns out that the set S coincides with the atomic surface of the structure,
discussed in the introduction. This important observation is a consequence of the
above definitions, especially (2.35). More precisely, if the ratio £, of bond lengths
assumes the fixed-point value (2.24), the physical structure is the intersection of VE
with a periodic repetition of the atomic surface S, the latter being a subset of V7.
We recall that the length unit in V! has been fixed in (2.31). For a peneric value of
the ratio &, the physical structure is not strictly self-similar. This amounts to giving
a “tilt’ to the atomic surface S, so that it gets a component in the direction of VE.

3.2. Connection with the projection method

A formal definition of the atomic surface has been given in section 3.1. We now want
to illustrate this formalism on the example of structures generated by the standard
projection method [24-27]. The atomic surface of such structures is known to be a
straight-line segment.

Consider the unit square lattice Z2 in the two-dimensional plane. The physical
space VE is defined as the line with an irrational slope ¢, passing through the origin.
We introduce the notation

t=tan¢ | (3.15)
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with 0 < ¢ < 7w /4, ie. 0 < t < 1. An open strip Q is drawn by sweeping a unit
square parallel to VE, This region is therefore defined by the inequalities

O<y—te<t+1. (3.16)

Figure 1 illustrates this construction. The structure is defined as the orthogonal
projection onta VE of all the lattice points contained in the strip 2. In other terms,
the stajrcase-shaped broken line considered in the previous section is the only one
entirely contained in the open strip £2, apart from the point at the origin.

We now aim at describing the quasiperiodic structures thus generated by means
of the general concepts and notations introduced above. The kth lattice point X;
along the broken line, to the right of the origin, is of the form given by (2.28). On
the other hand, its coordinates obey the inequalities (3.16), which express that the
point X, lies in the strip 2. We thus obtain

mA (k) = k-1 - Int{kw) mB(k) = 1+ Int(kw) (3.17)

with the notation

ot sin ¢
T t4+1 sinep+cose’

w

(3.18)

Here and throughout the following, Int(z} and Frac(z) denote respectively the integer
and fractional parts of a real number z:

z = Int(2) 4+ Frac(z) 0 Frac(2) < 1. (3.19)

The atomic abscissas x, can be derived from the result (3.17). We thus obtain a
result in agreement with the general expressions (2.32) and (3.9), namely

z, = ka+ (€4 - £8) g(kw) (3.20)
where the mean interatomic distance a and the bond lengths £4 and £2 read

1
= m——— A = ¢8 =sing. X
a o+ coso cos ¢ sin ¢ (3.21)
The functions f(6) and g(@), introduced in section 3.1, have the following simpie
forms:

g(8) = Frac(8) — 1 (3.22)

w=1 for 0<Frac(f) <w

f(9)=Fra°(9)-Fra°(9—“)={w for Frac(w) < B < 1.

(3.23)

By comparing the explicit form (3.22) of the hull function with the results
of section 3.1, we realize that the atomic surface consists of one single
interval S ={—1,0]. We have thus recovered the well known description of the
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Figure 1. The standard projection method, and the  Figure 2. Representation of the standard projection
resulting quasiperiodic binary chain. method using atomic surfaces.

standard projection algorithm in terms of atomic surfaces, which is illustrated in
figure 2.

The result (3.22)-(3.23) implies that the Fourier coefficients ¢y and dy,
introduced in (3.7)-(3.10), read

N=0: =0 dy=-}
, (3.24)
N#0: ey = i(1 - e TNwY /(22 N) dy =i/(2wN}.
The Parseval formula (3.8) can be checked by means of the identity
S LoelrlVe) | ai-w)  ogwil. (3.25)
N=1 N

The above results hold true for any irrational value of the slope {. When ¢
is a quadratic algebraic integer, the structure generated by the standard projection
algorithm is self-similar, and can alternatively be built from a substitution (see [28]
for an elementary exposition).

Let us introduce the continued fraction expansion of the slope ¢

t= =[P ] (3.26)
e —

r2+1~3+...

where the positive integers {»_} are called the gquotients associated with the number t.

The binary structure generated by the projection algorithm can be constructed
as the limit of a sequence of finite words W, , which obey the following recursion
(concatenation) formulae:

(3.27)

n

W W W, _, n even
T W, W n odd
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with the initial conditions W_;, = B and W; = A, We have thus W; = BA",
W, = (BA™)" A, and s0 on.

When ¢ = tan ¢ is a quadratic irrational number, namely a root of a polynomial
equation of degree two, of the form

K+ Lt+M=0 (3.28)

where K, L, and M are three integers, then the quotients {r,} are ‘eventually
periodic’. This means that there is a period p, such that r, = r,_, for n large
enough, say n > n, The recussion formulae (3.27) involve therefore only a finite
number of different rules, which can be put together into a singie binary substitution.
The matrices of the binary substitutions thus obtained are symmetric, and have
vnit determinant, in accord with the quasiperiodicity of the structures. Let us mention
a simple class of such structures, corresponding to the following quadratic numbers

t=[r,rr,..] =V +4-7) (3.29)

where » > 1 is an arbitrary integer. These numbers are often named alter metals:
r = 1 corresponds to the golden mean (¢ = 7!) and yields the Fibonacci sequence,
whereas r = 2 is referred to as the silver mean, and r = 3 as the copper mean. The
associated substitutions read
A= (BAT) A
Opt . (3.30)
B — BAT.

For r = 1, we do not obtain the simple Fibonacci substitution rules (2.14), but their
second iterate, which coincides with the substitution o of (4.2).

3.3. Counting systems associated with substitutions

In this section, we explain how one can associate to a substitution ¢ a counting
system, i.e. a way of counting, or representing, the natural integets in connection with
the substitution. This construction, introduced by Dumont [17], holds independently
of the Pisot character of the substitution. It has been used especially to prove the
result (2.38).

Let o be a primitive binary substitution, acting on the alphabet A = {4, B},
such that o(.A) begins with a letter .4: we shall say that A is a prefix of o(A). The
following proposition holds:

To every integer k 2 1 is associated a unigue counting sequence (w;, 8;)ygigns
where the w; are finite words on the alphabet 4, and the s; are letters of that
alphabet, so that

(i) The word w,_,s;_; is a prefix of o(s;), for1 <1 < n;

(ii) The first word is not empty (w,, 7 8), and the word w, 5, is a prefix of (A).

The first & letters £(k) = ¢;... ¢, of the sequence I are given by

(k) = a"(wn)a'“'l(wn_l) so(wy wg. (3.31)

As a first example, consider the substitution o, which acts on a single letter A,
according to

o, A— AP (3.32)



Quasiperiodic self-similar structures 1969

where b 2> 2 is a given integer. The words of the counting sequence are of the form
w; = AL, with 0 < §; < b—1for0 € i £ =, and &, # 0. The representation
formula (3.31) implies

k=3¢ ¥ (3.33)
i=0

which is nothing but the usual expansion of the integer & in base b, with digits {;}.

The construction described above is a generalization of the concept of counting
system to non-integer bases. This term comes from the following observation. The
number n of ‘digits’, ie. of words {w,} employed in the representation of the
integer k, obeys the inequalities v < k < v2,;, which imply the following estimate:

Ink
n E]—-)-\-"l“ . (3.34)

This demonstrates that the Perron-Frobenius eigenvalue A, of the substitution plays
the role of the base b of the counting system.

As a second example, let us come back to the Fibonacci substitution, defined
in (2.14). There are only two possibilities for each couple (w,,s;) in a counting
sequence, namely either (w; = 0,s; = A) or (w; = A, s; = B). For each integer k,
we define a collection of digits {€;}ogi¢n (& = 0 or 1), as being the lengths of the
words w;. The above construction implies £, # 0, and §; == 0 whenever §;_; = 1.
It & = 1, then w; = A, and o(w;) = A; if & = 0, then ¢i(w,;) = 0. The
formula (3.31) reads therefore

(k) = AP A1 Ab A (3.35)

In order to make the connection with a counting system more explicit, we notice
that the words A,, conmsist of v = F, ., letters, where the Fibonacci numbers F,
have been introduced in (2.17). As a consequence, (3.35) implies

k=Y 6F,,. (336)
i=l

Every integer can thus be written in a unique way on the basis of Fibonacci numbers,
subjected to the constraints described above. For instance 10 = Fy 4+ F;, and
19 = Fi+ Fia + 7+ s

3.4. Counting systems and atomic surfaces

The purpose of this section is to show how the counting system associated to a
substitution, described in the previous section, can be used to derive equations for
the corresponding atomic surface S, and to show that S is a self-similar set. The
atomic surface has been defined as the set of values taken by the hull function g(@).
We have equivalently

8§ =Tu,) (337
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where the v, denote the fluctuations of the atomic abscissas, defined in (2.32), and
the horizontal bar denotes the topological closure of a set. We also introduce the
following subsets of the atomic surface, defined by ascribing values to the last letter
sy of the counting sequences:

LA = {u, : sy(k) = A} LB = {u,: s,(k) = B}
(3.38)
RAi=e*+ LA RE =P 4+ LB,

As a matter of fact, the letter s;(k) of the sequence corresponding to the integer
k is nothing but €, ;, ie. the next letter in the sequence. L4 (respectively, LE) is
therefore the part of the atomic surface S restricted to the atomic labels &k so that
the (k 4+ 1)th letter is an A (respectively, a B).

In more concrete terms, L# (respectively, L?) is the part of the atomic surface
describing the left extremities of the A bonds (respectively, of the B bonds) of the
structure, whereas R# (respectively, RP) is the part of the atomic surface describing
the right extremities of the A bonds (respectively, of the B bonds). We have

S=L*ULB® =RAVUR"E. (3.39)

We now arrive at our main point, namely the construction of the atomic surface
S by means of the counting theorem mentioned above. We begin by observing that
(3.31) can be rewritten as

B(k) = o(B(ky))wy with (k) = o™ Nw,) - o(wy)w, . (3.40)

This result means that the word (k%) is the transform by o of a shorter word
%(k,), apart from a finite number of last Jetters, which build the word w,, and
can thus be listed explicitly. The integer k, is uniquely defined, since its counting
sequence is obtained from that of & by removing the final element (wy, s,). This
observation leads us to introduce the sets

L{t = {u; 1 wy(k) =0,35,(k) = A} L = {uz: wy(k) =0,5,(k) = B}
(341)

and to proceed along the following lines of reasoning,

o The quantities w, which are used to define the atomic surface are proportional to
the extension of the structure in V1, in units fixed by (2.31). Since the substitution
o acts on V! as a multiplication by X,, we have

L{ = 5, L4 LE = ) LP (342)

in the sense of pointwise multiplication.

s By keeping track of the different possible values of the final word w, in (3.40), we
can express the subsets L4 and L as sums of translated copies of the rescaled
sets L{ and LE.

For definiteness, consider again the Fibonacci substitution. The associated
counting system has already been described. Table 1 gives the possible values of
the couple (w,, s;), for each value of s;. Taking into account all the cases listed
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Table 1. Counting system associated with the Fibonacci substitution: possible values of
the couple (wp, 8q), for each value of 3.

L (wO: ‘90)

A (8,A), (4,B)
B (3,4)

there, and using the values w = 7%, X, = —r~!, we are led to the following
self-similarity equations:

LA = (—r LA u(-7"1Lf)  LB=r"t_ 7114 (3.43)
which have for unique solution the intervals

LA = [-772, 773 LB =[r3 7] RA =10,771] RE = [-r2,0].
(3.44)

The atomic surface therefore consists of a single interval § = [—7~2, »~1], which has
unit length. This result is in agreement with those exposed in section 3.2, concerning
structures generated by the standard projection algorithm. It is worth recalling that
the Fibonacci sequence is equivalent, up to a choice of origin, with that corresponding
to the projection method, for a slope t = v-1,

Let us now turn to the general case. The same procedure yields self-similarity
equations, analogous to (3.43), which relate the subsets L# and L? to translated
copies of the rescaled sets A,L4 and A,L®. The general form of these equations
will be given in (3.49). It can be argued that these formulae determine the sets L4
and L7 in a unique way, since these sets appear as the fixed points of a collection
of contracting linear maps.

Such invariant sets have been discussed in the mathematical literature, under
the name of ‘perfect homogeneous sets’ {29,30]. Most mathematical investigations
concern the simpler case where the different sets occurring in the right-hand side of
(3.49) do not overlap, whereas there is always some overlap in the physical situation of
atomic surfaces. It is also worthwhile noticing the close analogy between the present
problem and the construction of invariant sets by the so-called ‘iterated function
systems™—see [31] for an introductory exposition.

We denote by 0,.(S) and 8_(8) the upper and lower extremities of the full
atomic surface S, and by A8(S) = 8, (S)—6_(S) its extension, and we use similar
notations for the subsets introduced in (3.38). These quantities are related as follows:

8, (LP)=06,_(R*)=0,(S5) 8, (LA =8,(S) - p®
0,(R%)=128,(8)-p* 6_(L*) =0_(R%)=6_(9)

(3.45)
8_(L®)=6_(5) + p* 0_(R*) =0_(5)+p°
AB(LA) = AG(R*) = AO(S) ~ p* AO(LP) = A8(RP) = A8(S) - pB.

Now consider again the integer-valued function m(#), introduced in (3.13). Each
interval [#,, 8,] where m(#) is continuous, and hence constant, contributes to the
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atomic surface S for an interval of length |6, —8;|. Let us anticipate that the function
m(@) only exhibits a countable number of discontinuities. The atomic surface is
therefore the union of a countable number of intervals, with a total length equal to
unity.

We have thus A8(S) > 1, and two cases have to be considered:

() A0(S) = 1. In this first case, the atomic surface S consists of a single unit
interval, of the form S = {s, s -+ 1], and the subsets defined above are the following
intervals:

L% = [s,5 + p?] L =[s4 p* s+ 1]
(3.46)
RA =[s+ p%,5+ 1] RE =1[s,s + p"].

‘We have shown in section 3.2 that the standard projection method yields an atomic
surface which is a unit interval. The converse also holds true. Indeed, let
my = Int(s), and 8, = Frac(s). The hull function then reads

O+m,+1 for0<h<O
9(9)={ 0 )

0+ my for 8, < 8 < 1.
This result is equivalent, up to a change of origin, to (3.22), which is characteristic of
structures generated by the projection algorithm.

(i) AO(S) > 1. In this second case, which is the generic situation among
substitutions, the atomic surface has an extension A(.S) which is strictly larger than
its intrinsic length, or Lebesgue measure, | S| = 1. We will show on various examples
in section 4 that it usually consists of a countable infinity of disconnected intervals,
organized in a self-similar fashion, with 2 Cantor boundary.

The above construction of atomic surfaces may seem slightly abstract. Therefore,
we want to repeat the argument in a more concrete geometric, albeit less rigorous,
context, and to derive in another way the formulae of the form (3.43), of which the
subsets of the atomic surface are the unique self-similar fixed points. Let P denote
the collection of the lattice points {X,}, defined in (2.27). Let P4 (respectively, PZ)
be the subset of P corresponding to the left extremities of the A bonds (respectively,
of the B bonds). The projections of P# and PZ on the internal space V! coincide
with the subsets L4 and LF of the atomic surface S, which have been introduced
in (3.38).

The sequence ¥ which generates the points {X,} is invariant under the
substitution ¢. It can therefore also be written in a unigue way as a binary sequence,
made of the words A, = o{A) and B| = o(B).

Consider a point X of P, corresponding to the left extremity of a word A,
(respectively, B;). Then it is clearly the left extremity of a bond of type a,
(respectively, b)), and thus we have X € P* (respectively, X € P*). Moreover,
there is a point ¥ in P4 (respectively, in PZ), such that X = MY. These
observations show that we have MP4 C P%, and MPP C P%. The other points
X of P do not have a pre-image Y under the transform M. However, they are
connected to points which do have such a pre-image, i.e. to points of the sets M P4
and MPZ, by finite sums of the basis vectors e,, e,. These translation vectors can
be listed explicitly. The present argument is thus equivalent to the result (3.40).

Let us first take once more, for the sake of definiteness, the example of the
Fibonacci sequence. Since we have A, = AB, B, = A, three cases have to be
considered:

(GAT)
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e X is the left extremity of an A bond, the letter A being the first one of a word
Aj,: such points X describe M P4, and belong to P4,

e X is the left extremity of an A bond, the letter A being a word B,: such points
X describe M P2, and belong to PA.

e X is the left extremity of a B bond, the letter B being clearly the second one of
a word A;: such points X describe e, + M P4, and belong to PB.
We thus obtain the equalities

PA=MPAuUMPE PB=¢ 4+ MPA, (3.48)

By projecting these formulae onto the internal space V1, where the substitution acts
as a multiplication by X, = —7 1, we recover the result (3.43) of the counting system
approach.

We end up by giving the self-similarity equations for the atomic surfaces associated
with an arbitrary binary substitution. With the notation (2.1), and with e(A) = ey,
e( B) = e,, we have

A _ [ U (MPA+Ee(aj))]U[ L (MPB—[-Z:E(IJJ'))]

ita;mA i<i ith,=A i<i (3.49)
pB = LHB (MPA + jz(:ie(aj))] U LbL‘_:JB (MPB +j§e(bj)):| .

In order to make the connection with the counting system approach more explicit,
consider a point X, of the set P, and the counting sequence (w,,s;} of the
associated integer k. Then s, (respectively, s;) indicates whether X, (respectively,
the associated point Y) belongs to P4 or to P?Z, whereas w, encodes the lattice
translation vector leading from MY to X,

4. Binary chains: examples

In this section, we present examples of binary substitutions corresponding to
quasiperiodic structures which cannot be generated by the projection algorithm, and
exhibit complicated atomic surfaces. The dimension of the boundary of the atomic
surfaces, and its consequences on the diffraction spectra, will be evalvated in a
quantitative way.

4.1, The Fibonacci-squared substitution

As a first example, let us consider all the substitution rules associated with the
following matrix:

M = (f }) @.1)

which is the square of the matrix (2.13), corresponding to the Fibonacci substitution.
The eigenvalues of M read A; = 7%, A, = 7~2, where the golden mean r has been
introduced in (2.16). We have w = 7%, with the notation of (2.56).
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Table 2. Counting system associated with the Fibonacci-squared substitution o possible
values of the couple (wy, so), for each value of sy.

8 (wg,0)

A (0, 4), (A,B), (A4, B)
B (8,B), (B A)

Taking into account all the possible orders of the letters in the words o(A)
and o( B), we can distinguish six different substitutions corresponding to the matrix
M, namely

A— BAA A— ABA A— AARB
0'1: 0'2: 0'3:
B—+BA B—~BA B+ BA
(4.2)
A—BAA A— ABA A— AAB
0'4: 0‘5: 0'6:
B— AB B— AB B — AB.

Let us first focus our attention onto the substitution . The associated counting
system is described by table 2. According to the procedure of previous section, we
can derive from those data the following self-similarity relations between the subsets
LA and L® of the atomic surface S:

LA = (r 2 LAY u(r 2+ 72 LYY U (-1 + r2LE)
4.3)
LB = (2r 2+ 2 LY u(r2LE).

These equations can be firstly used to determine the extremities 6,(L4)
and 6, (L#?). We obtain the following equalities:

0.(L4) = Sup {r~2 + r=20_(L#), —v~1 4 7729, (LB)}
0_(LA) = Inf {r=20_(L4), —7~' + r~26_(LB)}
8,(L®) =Sup {2777 4 7726, (L4), 7720, (L)}
0_(LB) =1Inf {2772+ +~20_(L%), r~20_(LF)}

(4.4)

which have for solution
B,.(LA) = 71 f_(LA) = —77} 6.(LB)=1 6_(LBY=0. (45)
The extension of the atomic surface therefore reads

AB(S)y=0, (LBYy~0_(LA)=T. (4.6)

This quantity is larger than unity, so that a non-trivial structure is expected for the
atomic surface.

Figures 3 and 4 present plots of the periodic functions f(0) and g(@), defined in
(3.6) and (3.9). The data are obtained by constructing the finite chain corresponding
to the word B,, which contains F}; = 610 atoms. The presence of internal structure
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Figure 3. Plot of the function (&) describing Figure 4. Plot of the modulation function g(#) of
the sequence generated by the Fibonacci-squared  the Fibonacci-squared substitution o3.
substitution o3.

in the atomic surface, down to all length scales, is revealed by the very discontinuous
nature of the plots, which would be masked by the graphical resolution for larger
samples.

The self-similar character of the atomic surface, and the scaling properties of the
functions f(@) and g(#), which can be suspected from the plots, can be derived in
a quantitative way from (4.3). Figure 5 illustrates this investigation. The subsets L4
and L7 are symbolically shown as intervals, with extremities given by (4.5), as well
as the five sets which enter the right-hand side of (4.3). In the lower part of the plot,
the sets are folded modulo the unit period, in order to build the graph of the hull
function g(&). This function equals g(#) = 6 on the set L5, and on the right half of
the set L, denoted Lé), whereas it equals g(8) = 61 on the left half of the set L4,

denoted Lg). It turns out that the unit interval gets subdivided in a natural way into

F; = 13 sub-intervals, among which F; = 8 have length 7=%, and Fy; = 5 have
length 76, The extremities of the subdivisions are labeled as multiples of w = 772,
modulo the unit period: ‘3’ means thus Frac(3w), ‘5’ means Frac(—5w), and so on.
We introduce three functions a(€), &(8), and c(8), defined as being the char-
acteristic functions of the relevant parts, shown on the plot, of the sets L4 or LB,
These functions are equal to unity on the associated sets, and to zero on their com-
plements. We have found it useful to rescale the 0-axis in an appropriate way, so that
the functions a(8) and e(#) are defined on [0, 7], whereas b(8) is defined on [0, 1].
The above construction enables one to derive the following functional equations:

a(8) = a(77%) = c(77%8)
0o e(8) = c(1+7728) = 1= b(r7% + 77%6)
e(0) — a(8) = a(1+4 r728)
0<o<1: b(8) =1-b(r720) =a(r= 4+ r720) = (v~ + 77%6).

4.7

The structure of the above equations is analogous to that of (B1), (B2), which
define a binary Cantor function x(#) on the unit interval. Inspired by the analysis
performed there, and along the lines of the definition (B3), we introduce three
elementary partition functions z,(s), z,(s), z,(s), associated with the characteristic
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Figure 5. Construction of the modulation function and of the atomic surface associated
with the Fibonacci-squared substitution 3.

functions defined above. In other words, we set
z,(8) = E[I,-[’. (4.8)
i

In this definition, the {I,} are all the sub-intervals of [0, 7] where the characteristic
function «(8) is a constant (equal either to 1 or to 0), and we use similar definitions
for z,(s) and z,(s).

We also define the partition function zg(s) associated with the atomic
surface S as

z5(s) = Y _|LI° (4.9)
k

where the subintervals {I,} of [-7~1,1] are all the connected components of the
atomic surface ard of its complementary set. We use similar definitions for the
partition functions z; 4(s) and z;s(s), associated with the subsets L* and LZ. The
construction shown in figure 5 implies

25(8) = 772 4 2074 [2,(s) + 2,(s) + 2z.(s)]
zpa(s) =2r7%[z,(s) + 2,(8) + 2.(3)] (4.10)
zpp(s) = 77% [z, (8} + 22,(s) + 2z, (8) + 77 P2, (s) + 1] .
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On the other hand, the functional equations (4.7) are equivalent to the following
identities:

'rz“’zu(s) = z,(8) + z;(s) + T‘z’za(s) +1

(4.11)
T22(s) = 2,(s) 4 2,(8)  T2,(8) = 2,(5) + 2,(s) + 2,(s)
which have for solution
TZs(TZa _ 2)
2(8) = Ty — 2 - 1)
(4.12)
(s) = . S P —
T s Sy (e — 272 — 1) R e Ta
and hence
_ (7.23 _ 1)2
25(5) - 7-23(7-43 — 228 _ 1)
(4.13)
()= Z 21o(s) = ]
ZLals) = 7274 _ 2728 — 1) BN ™ S2s(pds L2725 — 1)

The expressions (4.12), (4.13) for the partition functions agree with the extensions
of the associated sets for s = 1, as they should, namely z,(1) = 7, z,(1) = 1,
z, (1) =17, 2g(1) =7, z;4(1) =277}, and z,5(1) = L.

The above results diverge under the condition 74 — 27%* — 1 = 0. The largest
real value of s for which this expression vanishes can be used, along the lines of
appendix B, to derive the dimension dy of the boundary of the atomic surface S,
namely of the set of its discontinuity points. We thus obtain

_In(1++2) _
dy = ——T=% = 0.915785. (4.14)

This number is very large, namely very close to unity, in accord with the large number
of visible discontinuity points in figures 3 and 4,

Let us now examine the consequences on the Fourier transforms of the sequence
{€;} generated by the substitution o;, and of the associated structure. Concerning
the abstract binary sequence {¢,}, we can study the convergence properties of the
Parseval identity (3.8). This is indeed a very efficient way of looking at how the
intensity is shared among the harmonics. Along the lines of appendix B, we define
the quantity

N
AN)=w(l-w) =2, (4.15)

n=1

which is expected to exhibit a power-law decay of the form

1 In N
A(N)zm P(Zlnr) (4.16)
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Figure 7. Comparison of the Fourier amplitudes of finite samples, with Fy4 = 987 atoms,
for (a) the Fibonacci chain (smooth atomic surface), and (b) the chain generated by the
substitution o3 (fractal atomic surface).

where the exponent reads # = 1 — dy = 0.084215, and where the period of the
oscillatory amplitude P is the logarithm of the Perron-Frobenius eigenvalue A, = 72,
Figure 6 presents a log-log plot of A(N), up to N = 10 The exponent 5
and the period of the oscillations are found in perfect agreement with the analytic
formula (4.16). The present example is a rather extreme one, in the sense that the
expopent 7 is very small. Hence the intensities fall off very slowly: some 44% of the
total intensity is still missing by considering 10* harmonics!

In order to give a more concrete picture of the physical consequences of the
fractal nature of an atomic surface, we compare in figure 7 the Fourier transform
of the binary chains generated by (a) the Fibonacci substitution, defined in (2.14),
and (b} the Fibonacci-squared substitution ¢, defined in (4.2). Both spectra consist
of the very same dense set of Bragg peaks. The most clearly visible peaks have
been labelled by couples (M, N) of integers, according to (2.55), with w = -2,
Case (a) corresponds to a structure generated by the standard projection method,
which possesses a smooth atomic surface, whereas case (b) i8 a case of a fractal
atomic surface, with a very large boundary dimension, given in (4.14). The difference
shows up clearly on the plots. The graph (b) exhibits less intense main diffractions,
and a more important background noise, induced by the finite sample size ( Fy, = 987
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atoms in both cases), as well as seemingly peaks, indicated by asterisks, which are
actually narrow regions where the maximal visible intensity falls off very slowly.

We end up this section by coming back to all the substitutions which are described
by the matrix M of (4.1). The six Fibonacci-squared substitutions, given in (4.2), fall
into two classes, according to table 3, which gives the extension A@(S) of their
atomic surfaces. Four of them (oy, 0;,05,04) have A6(S) = 1. Their atomic
surface is therefore an interval, and the associated structures are equivalent to the
usual Fibonacci chain, up to different choices of origin. The other two cases (o3 and
o4) are equivalent to each other; o5 has been studied at length in this section.

Table 3. Extension of the atomic surface associated with the six variants of the Fibonacci-
squared substitution.

Substitution AB(S)
01,82, 05, 0§ 1
o3, 04 r = [.618034

4.2, The Fibonacci-cubed substitution

We have shown in the previous section that the nature of the atomic surface is
affected by changing the order of the letters in the substitution rules. In the present
section, we want to show briefly that interchanging letters in longer substitution rules
yields a wider variety of atomic surfaces.

We consider the cube (third power) of the Fibonacci matrix, which reads

M= (g %) : (4.17)

The associated eigenvalues are \; = 73, and X, = —7r~3. Taking into account the
order of letters in the words o( A) and o( B), we distinguish 30 different substitutions
corresponding to the matrix M, namely

A— BBAAA A— BABAA A— BAABA
B BAA 2" B BAA T\ B BAA

A— BAAAB A— ABBAA A— ABABA
%'\ B_Baa % B BAA %'\ p_ BAA

A— ABAAB A— AABBA A— AABAB
B BAA %8B BAA %'B o BAA

A— AAABB A— BBAAA A-— BABAA
‘0 p . BAA ll.lBueABA ‘2% p ., ABA

A— BAABA A— BAAAB A— ABBAA
‘BB, ABA ‘B ABA 75 g ABA
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A— ABABA A— ABAARB A— AABBA
0'16: 0'17'. Tig v (4’18)

B—- ABA B— ABA B—+ABA

A— AABARB A-+AAABB A— BBAAA
Ty T * T

B— ABA B—+ABA B— AAB

A—- BABAA A— BAABA A— BAAAB
Gy Ta3 - Ty -

B— AAB B— AAB B— AAB

A+ ABBAA A— ABABA A— ABAARB
O'E: 026: 0'27:

B— AAB B AARB B -+ AAB

A— AABBA A— AABARB A— AAABB

B— AAB B— AAB B— AARB.

Table 4. Extension of the atomic surface associated with the 30 variants of the Fibonacci-
cubed substitution.

Substitution A8(S)

02, 03,013, 016, 017, 021, T2 1

G§, 12, F19) O2% {r+1)/2 = 1.309017
T4 3 - r=1.381966

O1, 04y 05, 07, OL§, 018y O3, 024, 028, T30 1 = 1.500000

08,09, 011,020,022, 025 r/2+ 1 =1.809017
o10; T2t (m+3)/2 = 12309017

For each substitution, we have evaluated exactly the extent A6(S) of the
corresponding atomic surface, by writing and solving formulac analogous to (4.4).
The outcomes are summarized in table 4. The 30 variants of the Fibonacci-cubed
substitution fall into six inequivalent families, among which the class AB(S) = 1,
corresponding to structures which can be generated by the projection algorithm, and
five other classes with fractal atomic surfaces. We notice that four out of the six
values of the extent A#(S) of the atomic surface are not integer-linear combinations
of 1 and ~. The denominator of two comes into the game through the identity
(14 r3)~! = r/2. In other words, the end points of the atomic surface S are
generally not the projections onto V! of superspace lattice points.

5. Ternary chains

This section is devoted to an extension of the previous considerations to chains
generated by substitutions acting on any number n of letters. These general
considerations will be illustrated by two examples of ternary chains (n = 3).
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5.1. Generalities

Let o be a substitution acting on the alphabet A = {A*(1 < ¢ < n)}. The associated
matrix M is a square n x n matrix. We assume that the substitution is quasiperiodic,
namely that M possesses the Pisot property, and that its determinant has unit absolute
value. A more detailed set of notations is introduced in appendix A, where the Fourier
module of an arbitrary quasiperiodic substitution is derived.

The superspace representation and the construction of atomic surfaces, described
in detail in the previous sections in the binary case, can be generalized to any number
of letters. Let £ be a semi-infinite sequence left invariant by . We construct a
physical structure by putting atoms on a line, at abscissas z, given by the rule (2.18),
where the bond length £, can take n values £/, according to the type of the kth
Jetter in the sequence X. The frequencies p* of the letter types are given by
the components of the normalized right eigenvector v, associated with the Perron—
Frobenius eigenvalue );. The mean interatomic spacing reads e = ¥ 1, £'p'.

The physical structure can be lifted as a broken line drawn on a lattice Z7",
generated by a basis {e;(1 < ¢ < n)}, in an n-dimensional superspace, R™ =
V1® VE. The physical space VE is spanned by the eigenvector »,, whereas internal
space V! is spanned by the other eigenvectors {v,(2 < a < n)}. If A, and
A4 are a pair of complex-conjugate eigenvalues, one considers the two-dimensional
real eigenspace spanned by the real part, and the imaginary part, of the complex
eigenvector v,. In some cases the action of M on the lattice Z™ can be viewed
as a hyperbolic transformation, leaving invariant a metric tensor, eventually up to a
sign [32].

Let us now describe in more detail the modulation function g, and the atomic
surface S, associated with the structure. We denote by ef and X[ the projections
onto internal space V! of the basis vectors e; and of the points X, of the superspace
structure. It is shown in appendix A that the Fourier module has rank », and that it
is generated, in reduced units, by the densities p* of the letters A® in the sequence .
As a consequence, the result (3.9) is generalized as

X! = g(ko',..., ko™ ) (5.1)

where the modulation g(#8,,...,8,_,) is now an {n—1)-dimensional vector function.
It is periodic, with unit period, in each of the variables 6;. In other terms, it is a
function on the unit (n — 1)-torus T.

Moreover, by using the identity 31, el, p* = 0, it can be checked that the
modulation assumes locally a linear functional form, namely

g(B1s.-abp1) = (er, —eD)(O+m)+ -+ (e, e )y +mp ). (52)

In this expression, which generalizes (3.13), m,,...,m,_; are integer functions
on T, which are locally constant,

The atomic surface S is defined as (the topological closure in V! of) the set
of values taken by the modulation function g on the torus T. The result (5.2)
allows one in particular to check that S tessellates VI, ie. that it is a fundamental
domain for the lattice of translations generated by the (n — 1) difference vectors
(e}, —el,) (1 € m < n—1). This tessellation property is common to all the displacive
modulated structures [3, 15]. It implies the physically appealing property that no atom
appears or vanishes when the cut is given smooth ‘phasonic’ deformations around V&,
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It turns out that & generically exhibits a fractal boundary, with an anomalous
dimension dg. In the following, we illustrate the above general discussion on the
example of ternary chains, generated by substitutions acting on an alphabet made of
three letters {A, B, C'}. We shall consider successively one example of each of the
two kinds of ternary substitutions, namely one where the substitution matrix has three
real eigenvalues, and one with two complex-conjugate €igenvalues.

3.2. One example with real eigenvalues

Our first example is that of a ternary substitution, already discussed in [33], in
connection with a quasiperiodic tiling of the plane by three species of triangles,
which exhibits a diffraction spectrum with seven-fold rotational symmetry. Consider
the following 3 x 3 substitution matrix:

110
M=1{1 0 1 (5.3)
111

which has for characteristic polynomial P()) = A —2A2 — X + 1. The cigenvalucs
of the substitution matrix M, and the geometrical characteristics of the associated
structures, can be expressed in terms of the following three numbers:

¢, =2cos(x/7) = 1.801938 ¢, = 2cos(2x/7) = 1.246980

(5.4)
t; = 2cos(3w/7) = 0.445042
which remind us of the seven-fold tiling quoted above. More precisely, the eigenvalues
read

M=14t, =1/t =t,t, =t} - 1 = 2.246980
M=1l—ty=—1/ty = —t;t, = 5 - 1 = —0.801938 (5.5)
Ay =1—1t3= 1/t; = tyt, = t5 — 1 = 0.554558.

These expressions show that the numbers ¢; obey many arithmetical identities, which
can be checked by means of their trigonometric expressions (5.4). It is also worth
noticing that {£;, —t,,;} are the roots of the polynomial @Q(t) = * - =2t + 1.

The Perron-Frobenius eigenvalue is ), whereas its two conjugates are smaller
than unity in absolute value. Moreover we have detM = —1. The associated
structures are therefore quasiperiodic. Taking into account all the possible letter
orderings, we consider the following 24 substitution rules:

A— ABC A— ACB A— BAC
o |B— AC o,:|B— AC o3 | B— AC
C— BC ¢ — BC ¢ — BC
A— BCA A—-CAB A—CBA
o, |B— AC o5t | B— AC ggs:{B— AC
C - BC ¢ — BC C— BC
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A— ABC A— ACB A— BAC
cq: | B — AC og: | B— AC oy | B — AC
C—-CB C—-CB C—-CB
A— BCA A—CAB A—-CBA
0'10: B_*AC 0'11: B—- AC 0"12: B"‘"’AC
C—-CE C—-CB C—-CB
A— ABC A— ACEB A— BAC
0'13 H B _— CA 0'14: B e d CA Uls: B'—)‘ OA (5-6)
C — BC C — BC C — BC
A— BCA A—CAB A—-CBA
0'16: B""’CA 0'17: B""CA 0'18: B—*CA
C - BC C -+ BC C - BC
A— ABC A— ACB A— BAC
A— BCA A—-CAB A— CBA
022: BHCA 0'23: B—-CA 0’24: B"""CA
C—-CB C—-CB C—-CB.

Let us choose one of these substitutions, and use it to build an infinite ternary
sequence X, made of the letters A, B, C. The frequencies of the letter types read

pr =11 pP=2-1,-1, pC =1y, (5.7

The substitution acts in internal space V! as the following diagonal matrix:

1_ (A OY_ (1=t 0
w= (8 )=l 5

in the basis of the right eigenvectors v, and v; of the substitution matrix M. The
vectors e}, which we denote here by A, B!, and C, are given by the components of
the corresponding left eigenvectors w, and w;. We choose units so that they assume
the simple form

1-1 2 —1
v=(ie) w=(y) e=() e
3 3 -}

and we denote by (&, n) the corresponding Cartesian coordinates.
The atomic surface S tessellates the plane V! under the lattice of translations
generated by

U=A'-B v=pB'-Cl. (5.10)
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As a consequence, its area | S| is equal to that of any unit cell of the lattice mentioned
above. Assuming, for definiteness, that the basis used to write (5.9) is an orthonormal
one, we obtain

IS| = |U x V| =3, - 1 = 4.405813. (5.11)

This area can alternatively be viewed as that of the projection of the unit cube
onto VI, or that of the hexagon spanned by the three vectors defined in (5.9).

The atomic surface exhibits an even wider morphological variety than in the
binary case. Figure 8 shows plots of the atomic surface associated with four of the
substitutions defined in (5.6). The plots are obtained through a pointwise construction;
each of them consists of v{] = 10426 points. The atomic surface always seems to
exhibit a fractal boundary. It is worth noticing that S is not a connected object in
the case of the substitution oy

Let us now show how the atomic surface S can be constructed by means of the
counting system approach, exposed in section 3.4. For the sake of definiteness, we
consider from now on the substitution oy, which leads to a rather simple construction
for the boundary of the atomic surface. The counting system associated with oy is
summarized in table 5. We define the following subsets of the atomic surface: L4,
LB, L¢, RA, RF, RC, in analogy with the binary case. The results of table 5 imply
the following self-similarity relations:

g}

Figure 8. Pointwise plots of the atomic surfaces corresponding to variants of the
termary substitution of (5.6): (4) substitulion o5, (b) substitution oy, (¢} substitution oy,
{d) substitution &zp.
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Table 5. Counting system associated with the ternary substitution a4 possible values of
the couple (1w, 8¢), for each value of ;.

81 (wq,89)

A (8,B), (B,A), (BA,C)
B (9,4), (AC)

¢ (80, (CB8)

LA = (B'4+ M LA) U (MILP) L# = (MILAY U (Cf + MTLE)

5.12
LC = (A'3 B'+ M'LA) u (A" + MILB) U (MILF) . ©12
These equations, which are analogous to (3.43)-(3.49), determine the sets L4,
LE, LC, and therefore their union, which is the full atomic surface S. As a first
consequence of (5.12), we can determine the upper and lower bounds of these sets
along both coordinate axes. We denote by £.(S}, n,.(S) these bounds for the full
atomic surface S, and use similar potations for its subsets. These quantities obey the
following two equations:

E (LAY =Sup {#] + (1 - 1)E_(L?), (1-t;)E_(LB)}

A 2 A B (5.13)
E_(L4) = Inf {#] + (1~ 1)€,.(L?), (1- )€, (L7)}

and ten other ones, which yield

(LM =1, E(LP)=0 (L) =8d-4+1 £(S)=1
E(LYY =0 E(LBYy=1 -5t +2 E_(LCYy=1 -4t +2

E_(S) =13 -5 +2 ny (L) =t n LBy =~3+1¢; (5.14)
(L) =1 n(8)=1 n(IY=t-t, 0 (L®)=—1
(L) =0  n_(S)=-t;.

The extension of the atomic surface along both axes therefore reads
AL(S) =5t —2 = 7.009689 An(S)y=1t;+1=1.445042. (5.15)

We have repeated this estimation for all substitutions listed in (5.6). The outcomes
are given in table 6. There are 11 different classes of substitution rules. We
notice the phenomenon already observed in section 4.2, namely the occurrence of
an integer denominator, 13 in the present case, in the expression of some of the
values of A£(S). This denominator shows up via the identity [1 — (1 —¢,)%~! =
(~12 4 8ty + 11)/13.

Let us now describe how to construct the atomic surface S corresponding to the
substitution @y, which has already been shown on figure 8(b). Figure 9 shows the
projection of the unit cube of the lattice Z* onto V!, as a hexagon spanned by the
vectors defined in (5.9). We recall that this hexagon and the atomic surface have
equal areas. Figure 10 shows the polygonal ‘skeleton” which will allow us to build the
atomic surface and its subsets. The vertices are labelled by the vectors introduced
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Table 6 Extension of the atomic surface associated with the 24 variants of the ternary
substitution defined in (5.6).
Substitution AE(S) An(5)
T, 03, OB, Tu 2t} + 2t - 1= 9.0978 1
oy, 17 Sty — 2 = 7.0097 t3+ 1= 14450
a3, 013 262 + 24y — 1 =19.0978 4+ 1=1.1981
o3, 00 3¢ + 4ty — 2 = 14.9487 -2 +1=0.8019
Tt 14 (32¢} + 30ty — 14) /13 = 11.0740 ~2t3 4+ 2 =1.1099
o4, T2 22+ 2t — 1= 9.0978 -3 — t34+ 2= 1.3569
o8, O16 382 + 38 - 2 = 13.1468 3 + 2t3 = 1.0881
06,019 2% 4 3t — 1= 10.8998 —t3 42 = 1.5550
07,018 (338 + 35¢t; — 12)/13 = 12.1706 t3+ 1= 1.4450
i1, O15 32 + 3t; — 2 = 13.1468 4 f3 4+ 1 = 1.643}
o5, a2 2t} 4 6ty — 3 = 14.3056 ~- +2=1.38019

Figure 9. Alomic surface of the
substitution og: plot of the projection
of the unit superspace cube onto
internal space V%

Figure 10. Atomic surface of the substitution oq: plot of the polyponal ‘skeletons’ of
(@) the subsets LA, LB, and L€, and (b} the subsets R4, RZ, and RC.
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in (5.9), or by their images by the map
Al— al4 Bl 4+ !
MI: | BT Al ! (5.16)
cl'— B4+t
so that e.g. Al stands for MT(AT).
The 14 parts of the boundary of the atomic surface are labelled as three types of
arcs, a, 3, and -+, spanned respectively by the vectors C', Al, and C]. This labelling
is compatible with the partitioning into the subsets L4, L®, L®, RA, RB, RC,

and with the tessellation under the translation vectors U and V. The self-similarity
relations (5.12) imply that the arcs described by the vectors «, 3, 4 are transformed

among themselves by the inverse map (M')'l, according to

a——f+y
MY [BoB- a (5.17)
-y — .

We have thus obtained an explicit iterative construction rule for the boundary of the
atomic surface, and of its relevant subsets.

The result (5.17) shows that (M?) ™" acts as a substitution on the three arcs. The
following counting matrix can be associated with it:

011
N=|110]|. (5.18)
100

Its characteristic polynomial reads Q(x) = 2® — 2? — 22 + 1. Iis eigenvalues are
therefore the reciprocais of the X_s, given in (5.5).

The boundary of the atomic surface S and of its subsets is obtained from its
skeleton, by applying the transformation (5.17) ad infinitum. Figure 11 shows the
outcome of this construction. We obtain a fractal boundary, which is self-similar

Lb)

Figure 11. Plot of the fractal boundary of the atomic surface of the substitution g, and
of (a) the subsets L4, LF, and LC, and (b) the subsets R4, RE, and RC.
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under the linear transform M!, given in (5.8). It exhibits therefore an anisotropic
kind of self-similarity, which can be termed ‘self-affinity’, although this word has
several meanings.

The self-similarity of the boundary of the atomic surface just mentioned above has
several kinds of quantitative consequences. Let us first determine its dimension dy,.
To do so, we observe that, after n iterations of the rules (5.17), the boundary is
approximated by a polygon, with a number of sides of order ¢}. Each side has an
extension in the & direction of order ¢; ", and an extension in the n direction of
order t;". The length of each side is therefore of order 7™, and the total length of
the boundary of order (1, /1,)", so that the dimension of the boundary reads

=t
dp = [yt = 2667865, (5.19)

The above estimates have another consequence, concerning the local scaling
behaviour of the boundary of the atomic surface around some special points, which
we call ‘flat’ points. Around such points (&, ny), among which all the points marked
on figure 10, the equation of the boundary assumes the scaling law

|7 = o] ~ |€ — €| 3. (5:20)

3.3. One example with complex eigenvalues

Our second example is based on the following 3 x 3 substitution matrix:

00 1
Mm=([10 0 (5.21)
01 1

which has for characteristic polynomial P()) = A* — X\? — 1, and for eigenvalues
A = 1465571 A, = A3 = —0.232786 + 0.792552i. (5.22)

The matrix (5.21) has the Pisot property, and its determinant is unity. The associated
structures are therefore quasiperiodic.

The interesting new point in the present case, with respect to all examples
considered up to now, is the presence of a pair of complex-conjugate subleading
cigenvalues, (Ay, A;). The associated left and right eigenvectors have complex
components, so that two complex internal eigenspaces show up in a natural way.
We choose to denote by V' the complex linear space where the substitution o acts
as a multiplication by the complex number X,, ie. as the similitude composed of the
dilatation by a factor p = |A,| = 0.826031, and of the rotation by an incommensurate
angle & = Arg A, = 0.295468 x 2x. We use from now on a complex coordinate 2
in V1, and we choose units so that the internal components of the superspace bonds,
which are proportional to the components of w,, read

Al=2(4)=1 B'=z(B)= ), Cl==(Cy=23. (523)
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B o A4 B
! 8
NRRERY
\/
C o A+C

Figure 12. Plot of the fractal boundary of the Figure 13. Construction of the fractal boundary
atomic surface of the ternary substitution defined shown in figure I2: plot of the projection of the
in (5.24). unit superspace cube onto internal space V1.

Let us focus our attention on the following substitution:

A= B
g:|B—=C (5.24)
C—= AC

and on the associated atomic surface. The counting system approach yields the
following self-similarity relations:

L4 =M\L°¢ LB =)\ 1A LC = X LB U (2(A) + A, LC) (5.25)

with z{A) = 1, in virtue of the choice of normalization (5.23).

The atomic surface S is the union of the three sets, fixed points of the relations
(5.25). Its fractal boundary is shown in‘figure 12. This closed curve admits an
iterative construction, analogous to that exposed in section 3.2. The starting point of
the construction is represented on figure 13, which shows the projection onto V! of
the unit cube of superspace. Its sides are Jabelled by three types of arcs, o, 3, and ~,
spanned respectively by the vectors Al, B!, and C'. These arcs are transformed

among themselves by the inverse map (MI)"I, according to

oa——f+y
MY (B (5.26)
Y- 8.

Tb the above rules is associated the counting matrix

010
N=[101 (5:27)
100
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which has for characteristic polynomial Q(z) = z* — z + 1, and for eigenvalues
uy = 1324718 py = pf = —0.662359 + 0.562279i. (5.28)

It is worthwhile noticing that the eigenvalues y, of the counting matrix )V are, in the
present case, by no means simply related to the eigenvalues X, of the substitution
matrix M. We end up by giving the expression for the fractal dimension of the
boundary of the atomic surface. This quantity can be easily derived by observing that,
after n iterations of the rules (5.26), the boundary is approximated by a polygon with
a number of sides of order u7, each side having a length of order |A,[". We thus
obtain

Inpe
= -tk =1, . .
dg = ] 1.471305 (5:29)

The atomic surface of the present example has been recently studied in the
mathematical literature [34], as a generalization of the so-called Rauzy fractal,
considered in previous works [35,36].

6. Conclusion

Let us first stress that substitutional structures live in their own right, enhancing
thus the importance of the real-space approach to the study of aperiodic structures.
In this work we have focused our attention on the nature of the atomic surfaces
associated with self-similar chains, generated by substitutions. OQur position is
somewhat analogous to that of experimentalists, who analyse structures in real space,
and lift them up in a higher-dimensional superspace, in order to sort out their
regularity. In contrast with the latter, we do not start from diffraction spectra to
explore superspace properties. We rather use directly the definition of structures in
terms of substitutional rules, and draw conclusions concerning, among other aspects,
their Fourier transform.

The classes of examples studied here suggest that generic quasipericdic
substitutions correspond to fractal atomic surfaces. The main observable consequence
is the anomalously slow fali-off of the intensities of high harmonics, which we have
related to the boundary dimension dgp of the atomic surface, at least in the simple
case of binary chains. This phenomenon will certainly influence physical properties,
such as the width of gaps in electronic spectra, to mention a simple example.

The Pisot nature of a substitution is a firs¢ criterion which demarcates, among one-
dimensional structures, those which possess Bragg peaks from the other ones. The
unit determinant condition is a second criterion, between quasiperiodic structures, i.e.
diffraction spectra which admit a simple indexing scheme, namely n integers, one per
superspace coordinate, and those with infinitely many independent Bragg diffractions.
Restricting the analysis to quasiperiodic substitutions, the present work emphasizes a
third criterion, which discriminates between the structures with regular atomic surfaces
from those with fractal atomic surfaces. The former ones, such as those generated
by the usual projection method, have simpler Fourier spectra than the latter ones,
with a faster fall-off of satellite intensities. This criterion amounts, in the binary case,
to the computation of the extension Aé(S) of the atomic surface in internal space.
One could have hoped to find a simple way of realizing, by mere inspection of the
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substitution rules, whether the associated atomic surface has a fractal or a regular
boundary. The present study demonstrates that no such simple criterion exists in
general.

The following classification thus emerges for substitutional structures, completing
previous studies. As far as long-range translational order is concerned, or equivalently
the nature of diffraction spectra, there are three consecutive demarcation lines:

(i) Pisot against non-Pisot structures, i.e. Bragg peaks against continuous Fourier
transform;

(ii) among Pisot structures, quasiperiodicity, i.e. a finite-dimensional superspace,
against limit-periodicity or limit-quasiperiodicity, i.e. an infinite-dimensional internal
space;

(iii) within quasiperiodic structures, smooth atomic surfaces, against atomic
surfaces with fractal boundaries.

Going down the above dichotomies, one meets more and more ordered structuies,
as testified by the ‘sharpness’ of their diffraction spectra. This progression also goes
in the direction of less generic substitutions. Looking in retrospect to the discovery
of incommensurate structures, then of quasicrystals, one realizes that nature offers
instances of structures which, though highly organized, pertain to increasing levels of
complexity. Hence, at least on logical grounds, one might be tempted to imagine that
the next class of structures to be discovered with long-range order would be more
complex than the previous two cases. Quasiperiodic structures with fractal atomic
surfaces represent one plausible step in this direction. They should exhibit a richer
diffraction spectrum, with a larger number of visible satellites. This plausibility is
strengthened by the fact that, as mentioned in the introduction, the above ideas have
been extended to tilings. This will be described in a forthcoming publication.
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Appendix A. The Fourier module of a general quasiperiodic substitution

In this appendix we present a self-contained algebraic derivation of the Fourier
module associated with an arbitrary quasiperiodic substitution. Let o be a substitution
acting on an alphabet which consists of n letters, A = {A’ (1< i< n)}. Let M be
the associated matrix. It is an » x n square matrix, with elements M, , positive or
zero. We assume the following properties:

(i) The substitution o is primitive, i.e. all entries of M¥ are strictly positive, for
some integer & 2 1, so that the Perron-Frobenius theorem holds,

(ii) o has the Pisot property, which means that, among the » eigenvalues, i.e. the
roots of the characteristic polynomiai

P(A) =det(A1—M)= A" 45 _, A" 14 cidgd + g (A.1)

the Perron-Frobenius eigenvalue A, is real and larger than unity, whereas the other
eigenvalues A, (2 < e £ ») are smaller than unity in modulus,
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(iii) detM = +1.

The above properties imply that the characteristic polynomial is irreducible
over the integers, and thus that the Perron-Frobenius eigenvalue is an irrational
algebraic integer of degree n, and that the other eigenvalues are its algebraic
conjugates. Indeed, if we had P()) = R;(A)R,(}), with polynomials R, with
integer coefficients, each of them would satisfy £, (0) = %1, and thus have at least
one root larger than or equal to unity in modulus, in contradiction with the Pisot
property.

Let us introduce a few useful notations. We denote by v, the right Perron-
Frobenius eigenvector, associated with the eigenvalue A;, and normalized by the
condition

n

Z(”1)i = 1. (A2)

i=]

The component (v,); represents the frequency o' of the ith letter type A in any
infinite sequence ¥ which is invariant under o. In a similar way, we denote by wy
the left Perron-Frobenius eigenvector, normalized so that

wy Y = z(lei (v); =1. (A3)
i=1

The component (w,); represents the bond length ¢ associated with the ith letter
type A%, in units of the mean interatomic distance a, under the condition introduced
in section 2.1, namely that the physical structure is the projection onto the physical
space VE of the superspace lattice points {X;}.

We introduce the right and left eigenvectors »,, w, corresponding to the other
eigenvalues A, (2 € a < n), by taking the algebraic conjugate expressions of the
Perron-Frobenius eigenvectors v, and w, defined above. This means that we replace
successively A, by the other eigenvalues X, in the expressions for the components
(v,); and (w,);. This procedure is well defined, since these components are rational
functions of ;. We have therefore

n

wo vy = Y (We)i (1) = 6,4 (Ad)

i=1

where §, , is the Kronecker symbol. For a = b, (A4) holds since the conditions
(A.2), (A3) are preserved under algebraic conjugation. For a = b, {A.4) expresses
the well known orthogonality between left and right eigenvectors with different
eigenvalues. This property can be proven in an elementary way as follows: A, w v, =
(w,M) v, = w, « (My) = Ayw, + v,

Consider now the matrices P, (1 £ a < n), defined by

(Pa):',j = (Ua.):' (wa.)j . (A‘S)
The identity (A.4) implies

P, =6, ,v w, P, =6, ,w, (A.6)
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and therefore

n

Pa.Pb=6a,be Z'Pa=1' (A'7)
a=1

These last equations express that the F, form a complete set of projectors. Their
right (respectively, left) action projects onto the right (respectively, left) eigenspaces
of the substitution matrix M.

Let us turn to the analysis of the Fourier transform of the geometrical structures
which can be constructed from the substitution o. We define a reduced wavevector
x as follows:

Q=2 (A.8)
a

The Fourier module, denocted by F, is defined as the set of values of =z

corresponding to Bragg peaks. Our aim is to prove that

=27 2{p, 1<i<n). (Aa9)

This simple and general result means that the Bragg peaks take place at reduced
wavevectors z given by integer combinations of the frequencies p* = (v,); of the
various letter types.

We now present a lengthy, but self-contained and elementary proof of the
fundamental result (A.9). First, we observe, along the lines of [4], and of the analysis
of section 2.4, that the reduced wavevector x belongs to F if, and only if, the
phase factors which occur in the recursion relations between Fourier amplitudes go
asymptotically to unity. With the notations introduced above, these conditions read

for 1 € i € n, independently of the choice of the elementary bond lengths £. We
have therefore to study a set of n equations of the form

yA" 50 modl  m—co. (A.11)

Let us proceed as we did in section 2.4 in the binary case. We introduce the notation
=trM™ = z AT (A.12)

The T, are integers, which obey the following (n + 1)-term linear recursion relation:
Tm+n + Spo 1 min-1 4ot 31Tm+1 + SUT (A'13)

where sy,...,s,_; are the coefficients of the characteristic polynomial, introduced
in (A.1). Then, for each value of y to be considered, we set

YA =a, +6, (A.14)
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with a,, integer, and |6,,] < 1. Equation (A.11) is then equivalent to the condition
& — 0. The recursion relation (A.13) leads to

Cmtn ~ Snellmin-1 """ " F10pup1 — Sl
= - (6m+n - sn—16m+ﬂ.-1 - slém—l-l - soém) — 0. (A.IS)

Since the left side of this last equation is an integer, it vanishes identically for m
large enough. We thus have

Cmtn = Sn-18min-1 ="'~ 51841 — Sy = 0 m2 N (A’lﬁ)
for some fixed integer N. Equation (A.16) expresses that the sequence a ., Obeys
the linear recursion relation (A.13), and can therefore be expanded on the basis
{Tp4r (0< k< n— 1)} of solutions of that recursion. We thus obtain

AN4m = C"EI'-.Fv-n + Cle+1 + Cn—le-l-n—l (A'17)

where the C, are unknown coefficients. Since the difference between T, and A
goes to zero for m — oo, {A.17) implies

y= AN (Co+ CA + -+ Cu AT (A.18)

The coefficients C), of the expansion (A.17) are to be determined from the n
initial values of the recursion (A.16), ie. from the following linear system:

ay = ChL+ O+ -+ C Ty
ANl =GN+ C\T+--+C T, (A.19)
ANtn-1 = Gl + O T+ + Crli Tz

We will not have to solve (A.19) in an explicit form. Let us just notice that its
solution is such that the numbers C,, are all rational. The sum between parentheses
in the right-hand side of (A.18) belongs therefore to the rational number field Q(X)
of the Perron-Frobenius eigenvalue A,, which is defined as the set of rational linear
combinations of the numbers A} (0< k€ n—1).

Moreover, we have sy = (~1)™detM = %1, so that

3\% it CHERE NPt S JUSIE EIR (A.20)
This relation permits us to show that y also belongs to Q(X,). Hence the reduced
wavevectors = of the Fourier module are among the numbers such that y = = (w,);
is in the number field Q(X,), for 1 £ 7 € n. This last statement is equivalent to
saying that z itself is in that number field.

There is a rational basis of Q( A,) which is especially adapted to the present study,
namely the set of the n frequencies pf = (v;); of the letter types. Let

z =) &(v); (A21)
i=1

where the coordinates £; are n rational numbers. We are thus left with the problem
of determining for which sets of rational coordinates {¢,} the n conditions (A.10)
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are simultaneously fulfilled. To do so, we notice first that, for « of the form (A.21),
the product = (w,); A* is the term corresponding to a = 1 in the following sum:

Sim = 39 &5 (,); (w,); AT (A22)

a=lj=1

Because of the Pisot property, we thus have z (w,); AT* = §; ., up to exponentially
small corrections. On the other hand, the sums defined in (A.22) can be evaluated
in closed form, by means of the identities (A.5)~(A.7). We thus obtain

Sz',m = Z‘Ej (Mm)j,i . (A.23)
=1

Since the sums S; ,, are integer combinations of the fixed rational numbers {¢; },
the conditions (A.10) amount to requiring that these sums are exactly integers, for
m large enough. On the other hand, the £; can be obtained from (A.23) by matrix
inversion. They read therefore

&= (M), ;8 m. (A24)
=1

Since the determinant of the substitution matrix is +1, the inverse matrix M~1
has integer entries. We thus conclude that the coordinates {£;} of the reduced
Bragg wavevectors in the basis (A.21) are integers. This completes the proof of the
result (A.9).

Appendix B. The binary Cantor fenction

This appendix is devoted to the study of a binary Cantor function x (@), with the same
kind of scaling properties as the characteristic functions associated with the fractal
atomic surfaces of binary structures, used in the body of this paper. This Cantor
function has the advantage of allowing an explicit analysis.

Let o be a fixed parameter in the range 0 < & < % The function x(8) is defined
on the unit interval {0, 1] by the following two properties:

x(M=1 for a<f<l-a (B.1)
(@ =1-x(ad)=1-x(1-af) for 0<6<1. (B2

By inserting (B.1) into (B.2), we get x(#) = 0 on both intervals [o?, o — &?)
and [1 - a + a?,1 - o?]. This procedure can be iterated. At the kth iteration,
the domain where the function x is defined is increased by 2* intervals of length
(1 - 2&)a* each. The limit sum of these lengths equals unity, so that (B.1), (B.2)
define a function x{#), which equals 0 or 1 everywhere, except for a zero-measure
set C of discontinuity points.

Figure B1 shows a plot of the Cantor function x(8), for o = 0.4. It is clear from
the construction that € is a self-similar Cantor set. In order to evaluate its (fractal)
dimension, let us introduce the following ‘partition function”:

2(s)= Y |51 (B.3)

T
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Figure Bl. Plot of the Cantor function
studied in appendix B, for & = 0.4.

In this definition, the sum runs over all intervals on which the function x(@8) is a
constant, and |I;| denotes the length of the interval [;. The function z(s) is thus the
Mellin transform of the length distribution of these intervals. The definition (B.3)
implies the normalization z{s) = 1, and it is expected to converge for large enough
values of the real part of the complex parameter s. The relations (B.1), (B.2) imply
the following identity:

z2(s) =(1-2a)* + 2o 2(s) (B.4)

which is obtained by writing separately the contribution of the central interval
[e, 1 — &}, and those of both lateral regions. Equation (B.4) yields

(1~ 2a)®
1-2a® °

The largest real singularity of that expression is to be identified (see e.g. [37]) with
the dimension dg of the set £, which is the boundary of the intervals {f;}, whence
the notation. We thus obtain

In2

dB = _ﬂ . (BG)

2(8) = (B.5)

The dimension dy increases from zero (o unity, as the parameter « is varied from
0 to 3. The result (B.6) could have been derived by more elementary means. Indeed,
the graph of the function yx consists, apart from the central interval, of two parts
which are similar to the whole graph, reduced by a scaling factor of a. The present
approach has the advantage of being systematic; it will be applied to more complex
situations in the body of this article.

Let us now turn to the Fourier analysis of the binary Cantor function. We start
by extending the function x(#&) to the whole real f-axis by requiring that it has unit
period. It can therefore be represented as a Fourier series of the form

x(8) = 3 cpePmNe (B.7)

N
where the coefficients ¢,y read

ey = G(2= N) with G(q) = fu : x(8)e~1® dg, (B.8)
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We can derive from (B.1), (B.2) the following equation for the Fourier
transform G{q):

G{q) = 1“i;_iq - afl+ e‘iil-a)G}G(aq) . (B.9)

The symmetry of the function x under the exchange of # into (1 — 8) suggests that
we should set

G(g) =e™¥/*H(qg). (B.10)

H(q) is then a real and even function, for which (B.9) becomes

H(q) = X(}+Y(H(aq)  X(a) = %s,-n 9 y(g) = 20005 129

2 2
(B.11)
Since Y'(0) = —2« is less than unity in absolute value, (B.11) admits the following
solution:
Hg)=) X(a"q) ][I Y(a™g) (B.12)

nz0 tgmegn—1

which has the convergence properties of a geometrical series.

Let us focus our attention on the behaviour of the Fourier transform for large
values of the wavevector ¢. If the function x(#) had only one discontinuity point,
or a finite number of them, one would observe the simple power laws G(q) ~ 1/¢,
and cy ~ 1/N. In the present case, the binary Cantor function has an infinity of
discontinuity points, so that a slower decay can be expected. Let us define the Fourier
intensity S(q) through

8(g) ={G(g)* = H(q)* (B.13)

and consider the following integral
09
S@=[ Se)w. (B.14)
g

The behaviour of this quantity for ¢ — oo can be derived from (B.11) in the following
way. By squaring both sides of that functional equation, and neglecting the X -function
which has a fast decay, as well as interference terms which oscillate rapidly, we obtain

S(q) ~2a T(ag). (B.15)

This approximate relation shows that the integrated Fourier intensity obeys the
following scaling law for large wavevector:

20~ 5 P (L) (B.16)

| In |

where the exponent

n=1-dg= In(2a:) (B.17)



1998 J M Luck et al

_z 0 T T T ¥ -,
-25 L =
=
= -34 | §
=
-35F -
—40} E Figure B2. Double logarithmic plot of the
. 5 8 7 2 s 10 quantity A(N), defined in (B.20), showing
the anomalous power-law fall-off of Fourier
In N intensities.

is simply related to the boundary dimension dg, introduced in (B.6). The amplitude
P, which enters the result (B.16) is a periodic function of its logarithmic argument,
with unit period, which reflects the similarity ratio « of the Cantor function in real
space.

If the function under study had only finitely many discontinuities, we would
have dg = 0, in accord with the laws mentioned above. The more singular the
boundary is, the larger its dimension dg, and the slower the mean decay of its
Fourier transform.

An efficient way of viewing the exponent n consists in studying the convergence
of the sum involved in the Parseval identity, recalled in (3.8). In the present case,
since we have x(8) = x(9)? almost everywhere, the Parseval formula reads

+oa 1
> lenlP=c= T3 (B.18)

N=-oo

Let us introduce the following quantity:

A(N)=¢,— Z le 2= (1+2a)2 zZ|cn;2 (B.19)

n=~N

which represents the Fourier intensity which is missed if one considers only the first
N harmonics of the Cantor function. The scaling law (B.16) implies that a similar
power law holds for A(N ), namely

In N
AN~ = Py (IET«I) : (B.20)

This approach will be used in the main body of this paper. It is illustrated on
figure B2, which shows a log-log plot of A(N). Both the power law, and the
periodic oscillations around it, are found in accord with (B.20).
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