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AbSLract Quasiperiodic self-similar chains generated by substitutions (i.e. deterministic 
concatenation rules) and their diffraction spenra are analysed in a systematic fashion, 
from the viewpoint of the superspace formalism. A substitution acting on n objecu 
generates quasiperiodic chains if, and only iL lhe associated substitution matrix 1ulBls 
two arithmetic conditions (Pisot property and unit determinant). The ~VUcture~ thus 
obtained can be alternatively built as sections of periodic patterns in an n-dimensional 
superspace. which are regular repetitions of an atomic surface. We derive a general 
algorithm to construct this atomic surface. It is a compact set of the (n- 1)-dimensional 
internal space, which is a unit cell for a lattice of translations, The atomic surface is 
nevertheless not necessarily connected, and its boundary is generically an anisolropic self- 
similar fractal. The dimension dg of this boundary is shown 10 govern the anomalously 
slow fall-off of the intensities of B r a g  diffractions, and therefore to influence physical 
properties. 

1. Introduction 

There are two well known approaches to the construction of quasiperiodic tilings. 
Historically, the first aperiodic tilings of the plane, such as those of Penrose and 
Ammann [I], were described by ‘inflation rules’, which were applied iteratively to 
the tiles. The one-dimensional Fibonacci chain provides a simple illustration of 
this procedure, alternatively called ‘substitution’ or ‘concatenation’. One is given 
two letters, A and B, and one substitutes A B  for A, and A for B. One 
then associates bond lengths tA, eB,  to each letter type. The second approach, 
namely the cut-and-project or section method, describes a two- or three-dimensional 
tiling by means of a higher-dimensional space. As a matter of fact, this way of 
visualising quasiperiodic structures in ‘superspace’ had already been introduced for 
incommensurate structures [2]. It is indeed both natural and economical to View a 
quasiperiodic structure in d-dimensional ‘physical space’ as the section of a periodic 
object in an n-dimensional superspace, with n > d. For instance, when dealing with a 
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quasiperiodic tiling, it is advantageous to book-keep vertex positions as sets of integer 
coordinates in superspace. 

These two approaches are quite different Indeed, the nature of the diffraction 
spectrum, ie. of the Fourier transform, of the aperiodic structure8 obtained with 
the first one is unknown U priori, whereas, from its very definition, the second one 
produces quasiperiodic objects, characterized the fact that their Fourier transform 
consists of B r a g  peaks, i.e. delta functions, supported by a module over the integers, 
spanned by n basis vectors in reciprocal space. Many systems share this property 131, 
among which there are incommensurate modulated crystal phases, incommensurate 
composite (misfit) structures, helicoidal magnetic structures, and quasicrystals. 

Taking some distance, the following question is to be raised. Whereas the second 
method automatically generates quasiperiodic objects, one is led to wonder what 
kind of Fourier spectrum corresponds to structures generated by substitution rules, 
and, more generally, what is the relationship between long-range order and the self- 
similarity implied by inflation or substitution rules. It is worth noticing the difference 
between these two ways of characterizing ‘regularity’ or ‘symmetty‘. The long-range 
order coded in a diffraction spectrum corresponds to regularity properties with respect 
to translations, whereas inflation symmetry is linked with discrete dilatations. Both 
are ‘repetitions’, but not of the same kind. Bombieri and mylor [4] produced the 
following criterion, in the case of one-dimensional structures: whenever a substitution 
has the Pisot property, defined below, the associated structure possesses Bragg peaks. 
Conversely, non-Pisot structures usually exhibit complex diffraction spectra [5-91 with 
singular scattering peaks, and multifractal scaling properties. 

Let us restrict the analysis to Pisot structures, and thus to Bragg diffraction spectra. 
Under the extra hypothesis, again to be discussed below, that the substitution matrix 
has unit determinant, a quasiperiodic object is generated, which can be embedded in 
a transversally bounded strip of a higher-dimensional superspace. In other words, it 
is possible to generate the structure by a section method, from a periodic array of 
bounded ‘atomic surfaces’. We recall that a quasiperiodic structure in d dimensions 
may be obtained as the intersection of a d-dimensional physical space VE with a 
periodic structure in an n-dimensional superspace, where n > d is the rank of 
the Fourier module mentioned above [2,1O,ll]. If A is the lattice of periods of 
the superspace structure, and if A* denotes its reciprocal lattice, then the Fourier 
module of the structure is some projection of .4* onto VE [3]. For quasiperiodic 
tilings, the superspace structure is a periodic array of atomic surfaces, which are 
bounded (n - d)-dimensional domains, included in ‘internal space’ VI, which is 
complementary to physical space [12-141. Moreover, in the case of substitutional 
structures, n is generically equal to the number of ‘letters’ involved by the substitution 
rules, e.g. n = 2 for the Fibonacci chain. In other words, substitutional chains can be 
viewed as incommensurately modulated displacive structures, with a periodic chain as 
basic structure. Fiially, under certain conditions on the bond lengths, to be specified 
later on, the existence of a substitution leads to an exact scale invariance of the 
corresponding quasiperiodic structures; this geometrical self-similarity plays a role in 
the study of their physical properties [15]. 

At least in one dimension, there are infinitely many quasiperiodic structures, built 
from substitutions. One may therefore wonder what is the superspace description 
of all those structures (as recalled above, this is the natural framework to describe 
them). The answer could have been simple, namely that every quasiperiodic structure 
corresponds to regular atomic surfaces. We soon discovered, to our surprise, that 
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a generk onedimensional quasiperiodic substitutional structure leads to a complex 
atomic surface, with a fractal boundary. We should mention that fractal atomic 
surfaces had already been mentioned for some instances of tilings 1161. 

The description of this phenomenon, and its full quantitative explanation, 
represent the aim of this paper. Both the ideas and the formalism exposed below will 
be extended to tilings of the plane in a separate publication. Since this work comes 
as the latest of a long list, we chose to write it in a self-contained way, in order 
for the reader to avoid the tedious task of searching for definitions through previous 
publications. Hence some parts contain material already published elsewhere; we also 
want to apologize for the unavoidable numerow self-quotations. 

This paper is organised as follows. Section 2 is devoted to a description of 
chains generated by binary substitutions. We give a systematic account, with some 
generalization, of the main outcomes of previous works, thus producing a self- 
contained summary of concepts and notations. section 3 contains the heart of 
the paper, namely the description of how to construct the atomic surface of any 
quasiperiodic substitutional chain, taking the binary example for definiteness. In 
section 4 we study several examples of binary chains. Section 5 is devoted to a 
generalization of previous results to substitutions acting on more than two letters, 
with examples of ternary chains. A brief conclusion is presented in section 6. 
n o  appendices contain more technical material, namely a derivation of the Fourier 
module in the general case, and the investigation of a binary Cantor function, which 
helps understanding the properties of atomic surfaces with fractal boundaries. 

2. Binary chains: general formalism 

In this section, we present a self-contained oveniew of general results concerning the 
structures generated by binary substitutions, their geometrical characteristics, and the 
nature of their diffraction spectrum. 

21. Binav substitutians and structures 

A binary substitution cr is formally defined by its action on an alphabet A = {A, B}, 
which consists of two letters. The substitution replaces each letter by a finite word, 
of the form 

A --t U( A) = a, . . .a,,+ 

B - + u ( B ) =  bl . . . b r + 6  

In the expression (2.1), each ai  or b, stands for a letter, which is either A or B, 
and a, p, y, and 6 are four positive integers, which denote the numbers of letters of 
each type in the words U (  A) and U( B). It is useful to recast these numbers in the 
form of a 2 x 2 integer matrix M, called the substitution matrix associated with U, 
and defined as follows: 

M = ( O  P 6  ’ )=(  
The substitution matrix therefore only describes the contents of the words U( A)  and 
U( B) in letters of each type, irrespective of the order in which these letters occur. In 

) . (2.2) 
number of As in U( A) 
number of Bs in U( A) 

number of As in U( B) 
number of Bs in U( B) 
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particular, two substitutions that only differ by the ordering of letters have identical 
matrices. 

We define the sequence of words A, and B,, obtained by acting repeatedly with 
the substitution U on the letters A and B: 

J M Luck et ai 

A ,  = a n ( A )  B, = u " ( B ) .  (2.3) 

The substitution matrix M permits the evaluation of the total numbers of letters 
contained in the words A, and B,, denoted respectively U," and U,". We have 
indeed 

and therefore 

(%) un = (:> 
where MT denotes the transpose of the matrix M. 

In order to work out the result (2.5) in closed form, we have to determine the 
spectrum of the substitution matrix M, which will play a central role throughout the 
following. Its characteristic polynomial reads 

P(A)=det(Al-  M ) = A Z - s A + p = ( A - A I ) ( A - A t ) .  (2.6) 

(2.7) 

In this expression, 

s = tr M = a+ 6 p = det M = a6 - Py 

are the invariants of the substitution matrix M, and 

S + 6  A, = 2 with A = s 2 - 4 p = ( a - 6 ) * + 4 P y  2 A, = 

(2.8) 

are its eigenvalues. 
We also define a sequence of integers a,,, through the recursion formula 

@, = sa,-,- P@,-* (2.9) 

with Q0 = 0, @, = 1, and where s and p are the invariants defined in (2.7). We thus 
have 

These integers and the eigenvalues OF the matrix M are related through the 
identities 

= s, Q3 = sz - p, and so on. 

(210) 
A! - A,. 

A1 - A2 
@, = A; = a,,, -A,@, A; = @,,, - A,*, 

which allow us to evaluate the successive powers of the substitution matrix in closed 
form. We thus obtain 

(2.11) 
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The total letter numbers of the’words A,, and B, can then be derived from (2.5) 
as 

U,̂  = an+, + ( P -  a@, v,” = @,+I t (7 - a)Qn .  (212) 

We assume in the following that u ( A )  begins with the letter A, and that the 
substitution matrix M is primitive 117. This means that all entries of M N  are strictly 
positive integers, for some integer N 2 1. Under these conditions, the sequence 
of words A, converges toward a semi-infinite sequence C = #“A), such that 
C = .(E). We have thus obtained an infinite abstract sequence which is selfsimilar. 

Under the above conditions, the Perron-Frobenius theorem asserts that the 
eigenvalue with larger modulus, say A,, is real, positive, and larger than one (see 
e.g. [lS]). In the binary case under consideration, A, is also real. The right eigenvector 
v1 of M, associated with A,, reads 

These components, which are positive and normalized so that p A  + pB = 1, are the 
frequencies, or densities, of the letters A and B in the infinite sequence C. 

Before we proceed, let us exemplify the above definitions with the simple case of 
the Fibonacci substitution 

A - A B  

B -+ A.  

The associated substitution matrix reads 

M = ( :  :) 

(2.14) 

and its eigenvalues are A, = T ,  A, = -7- l  , where 

T = - -  -k Js - 1.618034 (2.16) 

coincide with the Fibonacci numbers F,, 

2 

is the golden mean. The integers 
defined by the following recursion relation: 

F, = F,-L + F,+, F, = 0 Fl = 1. (217) 

There are several ways of associating a geometrical structure with an infinite 
abstract sequence such as C. One simple choice [5-7,9] consists in viewing A and 
B as beads with two different sizes, which we string along a thread in an ordered 
fashion. More precisely, we associate two arbitrary (positive) bond lengths tA, tB to 
the letters, and we place pointlike atoms on a line, at abscissas x k  such that I, = 0, 
and the kth bond length 

tk = Xk - Xk-, k 2 1 (2.18) 
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is chosen according to ek = eA (respectively, E h  = e B ) ,  if the kth letter of the 
sequence C is an A (respectively, a B). As a consequence, the mean interatomic 
distance, or inverse density, of the structure reads 

J M Luck el a1 

Let us consider the words A, and B,, defined in (2.3), and denote the lengths 
of the associated structures by l: and e:. These quantities obey the same linear 
recursion relations (24) as the numbers of letters. We have therefore 

e: = (a,,, - 6a,)eA + p n e B  e: = -@,eA +(anS1 - &,)eB.  (2.20) 

The dimensionless ratio E A / E B  of both bond lengths is an arbitrary parameter. 
There is nevertheless a natural choice for this quantity, which will be given a simple 
geometrical interpretation in the next section. For the time being, consider the ratios 
5, between the total lengths of the words A, and B, 

Wc have the following mapping T, between successive ratios: 

(2.21) 

When the generation label n becomes large, the ratios E, converge toward the 
attractive fixed point E .  of this map, which reads 

In the following, we assume that the initial ratio of both bond lengths assumes its 
fixed-point value 

(2.24) e A e " = $ = < . .  
Under this condition, the bond lengths and the atomic spacing are related through 

and the total lengths of the words A, and B, read 

e: = A; eA E: = A; eB . (226) 

We end up by noticing that the futed-point condition (2.24) amounts to requiring 
that the bond lengths are proportional to the components of the left Perron-Frobenius 
eigenvector w1 of the substitution matrix M, associated with the eigenvalue A,. 
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22. Superspace representation 

An alternative way of viewing the substitutional structure defined above consists in 
embedding it into a two-dimensional superspace. Let { e l ,  e,} denote a basis of a 
lattice in two dimensions, with no metric structure a priori. We define an infinite 
sequence of lattice points X, through X ,  = 0, and so that the vector difference 

L, = Xk - Xk-1 k 2 1 (227) 

is chosen according to L, = el (respectively, L, = ez), if the kth bond of the 
structure has length tA (respectively, tB),  Le. if the kth letter of the sequence C is 
an A (respectively, a B). We have therefore 

X, = mA(k)el + mB(k)ez (2.28) 

where the integers mA(k) and m B ( k )  are respectively the numbers of letters A and 
B among the first k letters of the sequence C. These numbers obey the evident sum 
rule 

mA(k)  + m B ( k )  = k .  (2.29) 

We thus obtain an infinite staircase-shaped broken line, drawn on the lattice, 
which escapes to infinity along the mean direction of the vector 

(2.30) 

coinciding with the definition (213). 
Let us call physical space, and denote by VE, the real linear space spanned by the 

vector vl. VE is thus the eigenspace of the substitution matrix M, associated with the 
Perron-Frobenius eigenvalue A,. Along the same lies,  we all intemal space, and we 
denote by V', the eigenspace of M, associated with the second eigenvalue A,. This 
linear space is spanned by a vector v2 given by 

We define the dimensionless fluctuations U, of the atomic abscissas z k ,  with 
respect to the average lattice of the structure, as follows: 

zk = m A ( k ) t A  + m B ( k ) k B  = ka + ( e A  - t B ) u k .  (232) 

The second of these equalities, together with the sum rule (2.29), yields 

mA(k)  = k p A  4- uk mB(/c) = k p  B - U,. (2.33) 

We denote by X f  and Xi the projections of the vector X ,  onto physical and 
internal spaces, defined by 

x, = x,E U, + x: vz . (234) 
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These quantities can be expressed in terms of the fluctuations uk as follows: 

J M Luck et al 

Uk x: =Uk. ( Y C P - 7 - 6  
A1 - A2 

X f = k +  (2.35) 

The second of these equalities is a consequence of the choice of normalization of 
the vector 02, made in (2.31). The first of them allows us to check that the atomic 
abscissas x k  are proportional to the projections Xf if, and only if, the ratio between 
both bond lengths eA and eB assumes its fixed-point value, determined in (2.23). This 
is indeed the condition under which the substitution acts on the physical structure 
exactly as a dilatation by the scaling factor A,, so that the structure is strictly self- 
similar, and can be viewed as a linear projection of the staircase-shaped broken line 
onto the physical space VE. 

2.3. Ertension in intemaI space 

The result (2.35) shows that the internal coordinates Xi of the atoms coincide with 
the fluctuations uk of the structure with respect to its average lattice. This section is 
devoted to the asymptotic long-distance behaviour of these fluctuations (k -, CO). 

In order to get an estimate of the fluctuations, let us focus our attention on the 
finite samples of the structure associated with the words A, and B,, introduced 
in (2.3). The total letter numbers and the lengths of these pieces have been 
determined in (2.12) and (2.20), respectively, in terms of the integers a,. 

The associated fluctuations, defined in analogy with (2.32), read 

(2.36) 

%JO cases have therefore to be considered, according to the magnitude of IA,I with 
respect to unity. Whenever we have IA,I < 1, we shall say that the substitution 0, and 
the associated matrix M, have the Pisot-Vijayaraghavan property, called Pisot property 
for short in the following. 

This term originates in the following definition. A Pirot-Vijqraghovan number 
119, 201 is a real number x > 1, which is an algebraic integer of any degree m 3 1, + 
. ' + a o  = 0, where the ak are integers, such that all its conjugates, namely the other 
(m  - 1) real or complex roots of the equation Q(r )  = 0, are smaller than unity 
in modulus. The above definition of a Pisot substitution o amounts to saying that 
the Perron-Frobenius eigenvalue A, is a Phot number, under the condition that the 
characteristic polynomial P( A),  evaluated in (2.6), is irreducible over the integers. 

(i) If the substitution has the Pisot property (IA,] < l) ,  the estimate (2.36) shows 
that the fluctuations associated with the words A,, and B, go to zero exponentially 
with n. It turns out that the fluctuations uk are boundcd, for all values of the atomic 
label k. 

(i) If the substitution does not have the Pisot property (IA,l 3 1). the fluctuations 
of the words A, and B, diverge as A;, whercas the system sizes diverge as A?. This 
observation suggests that the fluctuations uk obey the following power law: 

i.e. the solution of a polynomial equation of the form Q ( s )  = zm + am-l xm-l 

(2.37) 
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The 'wandering exponent' C is such that 0 < C < 1. The above estimate has been 
turned into a rigorous argumcnt [17], which yields the  more a m r a t e  asymptotic 
scaling law 

uk % k C G  (e) In A, (2.38) 

where the amplitude G is a periodic function of its argument z = Ink/ In A,, with 
unit period. The oscillatory amplitude G is generically a fractal function, which is 
continuous, but nowhere differentiable. 

In the marginal case where A, = fl ,  the Ructuations diverge only logarithmically. 
Examples of this situation have been examined in [5,6,21]. 

24. Nature of the diffraction spectrum 

We show in this section that the nature of the diffraction spectrum of a substitutional 
structure is also dictated by the eigenvalues of the associated substitution matrix, and 
especially by its Pisot character. The diffraction spectrum of a structure is the Fourier 
transform of some mass distribution living on the structure. For the sake of simplicity, 
we choose to put identical pointlike atoms at the abscissas {zk.. 

In order to investigate the associated diffraction spectrum, we consider the Fourier 
amplitudes corresponding to the finite words A, and B,, defined as 

Gf(Q) = e-iQ2.* Gf(Q) = (2.39) 
=XEA, = * € E .  

where Q is an arbitrary one-dimensional wavevector. These Fourier amplitudes 
obey recursion formulae, which express the iterative definition (23) of the words 
themselves. 'hking the example of the Fibonacci substitution (214) for definiteness, 
we obtain 

Gf+,(Q) = G t ( Q )  + exp (-iQef) G,B(Q) Gf+,(Q) = G f ( Q ) .  (240) 

In these equations, the phase factor involves the lengths of the words A,, which 
have been evaluated in (2.20). The formulae (240), with the initial conditions 
G t ( Q )  = exp(-iQtA), G f ( Q )  = exp(-iQtB), determine entirely the Fourier 
amplitudes. They allow therefore the evaluation of the structure factor, or Fourier 
intensity, S( Q), associated with the infinite structure, which is formally defined as 
the limit 

(2.41) 

It turns out that the Fourier spectrum of a substitutional structure can be a 
very intricate object, and that the structure factor S(Q) is in general not a smooth 
function, but should rather be viewed as a measure, or a generalized function, or 
distribution. We will come back to this point at the end of this section. 

In the sequel we shall be essentially interested in the presence, or the absence, 
of Bragg peaks, i.e. delta functions, in diffraction spectra. We recall that there is a 
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B r a g  peak at the wavevector Qu if the Fourier amplitudes grow proportionally to 
the numbers of atoms in the samples, i.e. 

G ~ ( Q u )  % C(QJ v," GE(Qu) % ~ ( Q u )  v," n -+ 00 (2.42) 

where the amplitude C(Qu) is a complex quantity. Equation (2.42) expresses the 
fact that a macroscopic fraction of the atoms diffract in a coherent way at the 
wavevector Qu. 

We are thus led to investigate under which conditions the amplitudes given by the 
recursion relations (240) grow according to the law (2.42). Firstly, we observe that 
this maximal growth takes place for the value Q = 0 of the wavevector, where the 
relations (2.40) are equivalent to the letter counting equations (2.4). 

It can be argued that Qu is a Bragg wavevector if, and only if, all the phase factors 
which show up in the recursion relations (240) go to unity in the R -+ m limit, so 
that the growth is similar to that of the Q = 0 case. This argument has been made 
rigorous by Bombieri and llylor [4]. 

In the example of the Fibonacci sequence, the phase factor can be expressed in 
terms of the Fibonacci numbers, defined in (2.17), and the above condition reads 

J M Luck et al 

*F,+O mod 1 .  (2.43) 

It can be shown in an elementary way (see e.g. [SI) that this condition is fulfilled if, 
and only if, the wavevector takes the form 

277 

* = J + K r  
27r 

where J and I< are two arbitrary integers. Hence the diffraction spectrum of 
the Fibonacci chain contains B r a g  peaks for the values of the wavevector given 
by (244). Those values form a Z-module with rank two, Le. the set of integer linear 
combinations of two elementary wavevectors, 2s /a  and 2nrfa. As a matter of fact, 
the whole intensity is concentrated on these Bragg peaks. In other words, we have 
recovered the well known fact that the Fibonacci chain is quasiperiodic. 

Let us now consider an arbitraly substitution U. The condition that the phase 
factors converge to unity yields equations of the type 

x A ~ - + O  mod 1 (245) 

where A, is the Perron-Frobenius eigenvalue of the substitution matrix. A theorem 
by Pisot [19]-see also [20] for a detailed exposition-asserts that the limit (2.45) 
holds true if, and only if 

(i) A, is a Pisot number, in the sense defined above, 
(ii) I belongs to some Z-module M ( A , ) ,  related to A, in a known fashion. 
The general case of quasiperiodic substitutions acting on any finite number 

of letters is considered in appendix A, where a complete characterization of the 
associated Fourier module is given. In the present case of binary substitutions 
and quadratic algebraic integers, we can give an elementary derivation of the 
module M(A,), following the approach described in [6]. Consider a binary 
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substitution v with the Pisot property. We can recast the phases which enter the 
evaluation of the Fourier transform of the structure as follows: 

Qg! zz Qa(& + P - a)@, Qf," E* + Y - a)@., (2.46) 

where the integers @, have been defined in (2.9), and where exponentially small 
terms of order A; have been neglected. We are thus led to study the equation 

Yan - 0  mod 1. (2.47) 

Along the lines of [6], we set 

y a m  = a,  4- 6, (248) 

with a,  integer, and l6,l 6 4, so that (247) is equivalent to 6, -, 0. The recursion 
relation (2.9) then implies 

a,  - sa,- ,  + - - -6, + ~6,-1- ~ 6 , - ,  3 0 .  (2.49) 

Since the left side of this equation is an integer, it vanishes identically for n large 
enough. We thus have 

a ,  - s a , - ,  + pa,-* - 0  - n 2 N + 2  (2.50) 

for some finite integer N .  This last equation can be solved in a dosed form, and 
yields 

a N + k  = a N @ k + l  +(a ,+ ,  - S a N ) @ k  k 2 0. (2.51) 

By inserting this result back into (248), and taking the k -, CO limit, we obtain 

aN+l P U N  y=--- A N + ' '  
1 

(2.52) 

We have thus shown that a real number y obeys (2.47) if, and only if, it belongs 
to the 2-module 

M(Al) = Z{1, l / A l ,  l / A ; ,  . . .} (2.53) 

"No generated by all the negative powers of the Perron-Frobenius eigenvalue. 
different situations have therefore to be considered: 

24.1. The quasiperiodic case. det M = fl. In this case, (2.10) implies 

1/x; = f (ant1 - X,Q,) . (2.54) 

This shows that all the negative powers of A, are integer-linear combinations of 1 
and A, itself, so that the module defined in (2.53) coincides with the module over 
the integers generated by 1 and A,: M(A,) = Z{l,Al}. 
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The diffraction spectrum has therefore Bragg peaks for the wavevectors Q such 
that both phases evaluated in (246) correspond to y values of the form y = J + K A , .  
These conditions are met if, and only if 

_-  Q ' - M + N ~  
277 

(2.55) 

where M and N are two arbitrary integers. We have introduced the notation 

w = p B  = 1 - P A  (2.56) 

where the frequencies p A  and p B  have been defined in (2.13). The Brag  peaks 
of the diffraction spectrum are thus located at values of the reduced wavevector 
I = Qa/(2n) which are integer-linear combinations of the frequencies p A  and p B .  
In more technical terms, they are supported by a Z-module with rank two, called the 
Fourier module. The basis { l ,pB}  of the Fourier module has been chosen in writing 
(2.55) for the sake of further convenience. We could have chosen other bases as well, 
such as {l ,pA] or { p A , p B } .  The result (2.55) generalizes (2.44). obtained in the 
case of the Fibonacci chain. 

For further reference, let us give the formal expressions of the Fourier amplitude 
G( Q) and of the Fourier intensity S( Q) of the infinite structure 

C ( Q )  = CM,N 6 (E - M - N w  
M P  

(2.57) 

where the complex Fourier coefficients CM,N are defined as in (2.42). 

24.2. The limilquasiperiodic case. detM + f l .  Under this condition, all the 
generators of the module M ( X , ) ,  given in (2.53), are linearly independent over 
the integers. As a consequence, the Bragg peaks of the diffraction spectrum are 
supported by a Fourier module which has a countable infinity of generators over the 
integers. The term 'limit-quasiperiodic' for such a structure has been proposed [22], 
in analogy with the case of limit-periodic functions, which have a Fourier module 
with an infinity of generators given by an integer geometrical progression, such as 
M ( b )  = {l,l/b, l / b z , .  . .}, for some integer base b > 2. 

2.5. Summary 

lb close this section, let us summarize the main results concerning the relationship 
between the arithmetic properties of a binary substitution U, and geometrical 
properties of the associated structure. It turns out that three different cases have 
to be considered. 

Let us emphasize that we have restricted ourselves to substitutions with irreducible 
characteristic polynomials. Otherwise the situation is more complicated, so that the 
classification given below has several kinds of exceptions. Interesting examples of 
such exceptions can be found among the substitutions with constant length [U]. The 
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associated sequences can also be generated by automata, such as e.g. the Thue-Morse 
sequence, or the period-doubling sequence. 

(a) The non-Pisot case (IX,l > 1): the extension of the structure in internal 
space, or equivalently its Ructuations in physical space, diverge as a power law of the 
system size, with a wandering exponent C given in (2.37). The diffraction spectrum 
does not contain any Bragg peak, except at the origin Q = 0 of reciprocal space. 
There is strong evidence in favour of a singular continuous Fourier intensity measure, 
in particular from multifractal analysis [7) The diffraction spectrum usually exhibits 
a complex pattern of strong singular scattering peaks [9], which possess a simple 
labelling scheme only in a few specific cases [5,6]. 

(b) The limit-quasiperiodic case (IX,l < 1, detM = A,A, # fl): the structure 
exhibits bounded fluctuations with respect to its average lattice, and a bounded 
extension in internal space. The discrete component of its diffraction specaum 
consists in Bragg peaks, supported by a Fourier module with a countable infinity of 
generators over the integers, related to the negative powers of A,. It is most probable 
that tbe whole intensity is generically concentrated on this discrete component, so that 
the structure is almost-periodic, and more precisely ‘limit-quasiperiodic’ [22]. It could 
therefore be viewed as a section of a periodic object in some infinite-dimensional 
(functional) space. 

(c) The quasiperiodic case (det M = A,X, = kl): in this last case, the structure 
still has bounded fluctuations with respect to its average lattice, and a bounded 
extension in internal space. The discrete component of its diffraction spectrum 
consists in Bragg peaks, supported by a Fourier module with rank two, given in 2.55). 
The whole intensity is concentrated on this discrete component, so that the structure 
is quasiperiodic It can therefore be viewed as a section of a periodic object in a 
two-dimensional superspace, which is the periodic repetition of a bounded atomic 
surface. Such a description is the central object of the next sections. 

3. Binary chains: atomic surfaces 

3.1. Definitions 

In this section, we study from a general viewpoint the atomic surfaces associated with 
quasiperiodic binary substitutions. Let cr be such a substitution. We use the notations 
introduced in section 2, and investigate first the sequence { e k } ,  defined as 

ek = uk - uk-1 ( 3 4  

where the dimensionless fluctuations uk have been defined in (232). It follows 
from (3.1) that the ek  assume only two values, namely ek  = e* (respectively, 
ek = eB) ,  if the lcth letter of the sequence C is an A (respectively, a B), with 

Let us consider the Fourier amplitude of the sequence {ek), defined as 

(3.3) 
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where we have used a lower-case letter for the wavevector q, in order to distinguish 
the Fourier transform of the abstract sequence from that of the associated atomic 
structure, considered in section 2. One can show, along the lines of the previous 
section, that the Fourier amplitude i (q)  consists of Bragg peaks, at wavevectors 
given by (255), with q replacing the product Qa. We thus have 
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The Fourier coefficients depend only on N, since 2 ( q )  is a 2n-periodic (generalized) 
function of q, whence the notation cN. Moreover, we have = ch, where the 
star denotes complex conjugation, and 

K 

K-m I< 
k=l 

(3.5) 

In this last equation, we have introduced the notation ( A k )  for the spatial average of 
a sequence { A k }  over a sample whose length goes to infinity. This quantity is called 
a Cairo  average. 

The sum over the integer N in (3.4) can be interpreted as the Fourier series of 
a periodic function. We thus obtain 

C k  = f ( k m )  (3.6) 

f(e) = cNeZiiiNB (3.7) 

where 
t m  

N=-m 

is a real periodic function of its argument 8, with unit period. This result means that 
the binary sequence {ek}, which codes for the letters in the sequence C, is given by 
the restriction of a periodic function f (0 )  of a real variable, to the multiples B = kcw 
of the 'frequencj' W. 

The Fourier coefficients { c N }  only depend on the substitution under consider- 
ation. One of the goals of the present study is to obtain estimates concerning the 
decay of the cN when the label N of the harmonics gets large. It is worth mentioning 
the Parseval identity 

t m  

lCN12=  (e;) = P A ( € A ) 2 t p B ( € B ) 2 = W ( l - m )  ( 3 4  
N=-m 

which will be used in the following. 

By Fourier transforming (3.1), we obtain 
Let us now examine the sequence tuk} of the fluctuations of the atomic positions. 

Uk = d k w )  (3.9) 

where g is still a periodic function, with unit period, given by 
t m  

g(e)=  dNeZ""@. (3.10) 
N=-m 
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The functions f and g are related through 

f(e) = g(e) - g(e - W) . (3.11) 

Equivalently, in terms of their Fourier coefficients d ,  and e,, we have 

c, = (1 - ecZriNw)dN N f: o (3.12) 

whereas d, is an irrelevant constant. 
The central result (3.9) shows that the fluctuations of the atomic positions with 

respect to the average lattice are given by the restriction to the multiples of w of a 
bounded and 1-periodic function g(e), called the modulation, or hullfunction. 

In the present context, the hull function has a remarkable property. Let us adopt 
again the initial condition I, = 0, introduced in last section, and focus our attention 
on the kth atom of the structure. The result (2.33) implies that the difference between 
uk and kw is an integer. This observation leads to the following form of the hull 
function 

g(e)  = et m(e) (3.13) 

where m(0) is an integer-valued function, so that 

m(e t 1) = m(e)  - 1. (3.14) 

Consider now the hull function over one period, say 0 < 8 6 1. Since the 
fluctuations of the atomic abscissas are bounded, the integer-valued function m(0) 
assumes a finite number of values, in a range mmin 6 m(8) < mma. The graph of 
the hull function g(S) over one period is therefore contained in a finite number of 
parallel straight segments with unit slope. 

Let S denote the set of the values taken by the hull function g(0). The above 
observation allows us to reconstruct the hull function itself from the very set S, by 
folding it up modulo its unit period. 

It turns out that the set S coincides with the atomic surface of the structure, 
discussed in the introduction. This important obsenation is a consequence of the 
above definitions, especially (2.35). More precisely, if the ratio to of bond lengths 
assumes the fixed-point value (2.24), the physical structure is the intersection of VE 
with a periodic repetition of the atomic surface S, the latter being a subset of VI. 
We recall that the length unit in V‘ has been futed in (2.31). For a generic value of 
the ratio Eo, the physical structure is not strictly self-similar. This amounts to giving 
a ‘tilt’ to the atomic surface S, so that it gets a component in the direction of VE. 

3.2. Connection with the projection method 

A formal definition of the atomic surface has been given in section 3.1. We now want 
to illustrate this formalism on the example of structures generated by the standard 
projection method [24-271. The atomic surface of such structures is known to be a 
straight-line segment 

Consider the unit square lattice Z2 in the two-dimensional plane. The physical 
space VE is defined as the line with an irrational slope t, passing through the origin. 
We introduce the notation 

t = t a n +  (3.15) 
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with 0 < 4 < n/4, i.e. 0 < t < 1. An open strip R is drawn by sweeping a unit 
square parallel to VE. This region is therefore defined by t he  inequalities 
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o <  y - t x  < t + l .  (3.16) 

Figure 1 illustrates this construction. The structure is defined as the orthogonal 
projection onto VE of all the lattice points contained in the strip 52. In other terms, 
the staircaseshaped broken line considered in the previous section is the only one 
entirely contained in the open strip R, apart from the point at the origin. 

We now aim at describing the quasiperiodic structures thus generated by means 
of the general concepts and notations introduced above. The kth lattice point X, 
along the broken line, to the right of the origin, is of the form given by (2.28). On 
the other hand, its coordinates obey the inequalities (3.16), which express that the 
point X, lies in the strip R. We thus obtain 

naA(k) = IC- I-Int(kW) mB(k)  = I t  Int(kw) (3.17) 

with the notation 

t Sin 4 
t+1-s inq5+cos+ 

U = - -  (3.18) 

Here and throughout the following, Int(z) and Frac( z )  denote respectively the integer 
and fractional parts of a real number z :  

z = Int( z )  + Frac( z )  0 < Frac( z )  < 1. (3.19) 

The atomic abscissas x, can be derived from the result (3.17). We thus obtain a 
result in agreement with the general expressions (2.32) and (3.9), namely 

S, = k a t  ( e A  - eB)  g ( b )  (3.20) 

where the mean interatomic distance a and the bond lengths tA  and eB read 

(3.21) 

The functions f(S) and g(S), introduced in section 3.1, have the following simple 
forms: 

(3.22) g(e) = Frac(0) - 1 

(3.23) w - 1 for 0 < Frac(0) < w 
for Frac(w) < 0 < 1 .  f(0) = Frac(0) - Frac(0 - W )  = [ 

By comparing the explicit form (3.22) of the hull function with the results 
of section 3.1, we realize that the atomic surface consists of one single 
interval S = [-1,0]. We have thus recovered the well known description of the 



Qucrriperiodic self-similar sIructures 1967 

. . . . . . . . 

. . . . . .  

. . . . .  

. . .  
. . . .  

. . . . .  
. . . . . . . 

. . . . . . . . . .  
Figure 1. The standard projection method, and the 
resulting quasiperiodic binary chain. 

Figure 2. Representation of the standard projection 
method using alomic surfaces. 

standard projection algorithm in t e r m  of atomic surfaces, which is illustrated in 
figure 2. 

The result (3.22)-(3.23) implies that the Fourier coefficients cN and d,, 
introduced in (3.7)-(3.10), read 

N = O :  c,=O d o = - ;  

N # O :  c, = i(1- e-2""")/(2nN) d, = i/(2rrN). 
(3.24) 

The Parseval formula (3.8) can be checked by means of the identity 

2 1 - m F 2 n N w )  =?rZw(l-w) O $ W < l .  

N=l 
(3.25) 

The above results hold true for any irrational value of the slope t. When t 
is a quadratic algebraic integer, the structure generated by the standard projection 
algorithm is self-similar, and can alternatively be built from a substitution (see [28] 
for an elementary exposition). 

Let us introduce the continued fraction expansion of the slope t 

(3.26) 

where the positive integers {r,,} are called the quolienfs associated with the number t. 
The binary structure generated by the projection algorithm can be constructed 

as the limit of a sequence of finite words W,, which obey the following recursion 
(concatenation) formulae: 

(3.27) 
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with the initial conditions W-I = B and W, = A. We have thus W, = BAr', 
W, = (BA'I)'*A, and so on. 

When t = t a n +  is a quadratic irrational number, namely a mot of a polynomial 
equation of degree two, of the form 

(3.28) 

where K, L, and M are three integers, then the quotiens {r , }  are 'eventually 
periodic'. This means that there is a period p, such that T, = r,-p for n large 
enough, say n 2 nu. The recursion formulae (3.27) involve therefore only a finite 
number of different rules, which can be put together into a single binary substitution. 

The matrices of the binary substitutions thus obtained are symmetric, and have 
unit determinant, in accord with the quasiperiodicity of the structures. Let us mention 
a simple class of such structures, corresponding to the following quadratic numbers 
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K? + L t f  M = 0 

(3.29) 

where P 2 1 is an arbitrary integer. These numbers are often named after metals: 
P = 1 corresponds to the golden mean ( t  = T-') and yields the Fibonacci sequence, 
whereas r = 2 is referred to as the silver mean, and P = 3 as the copper mean. The 
associated substitutions read 

A + ( B A ~ ) " A  

B -+ BAr.  
, (3.30) 

For P = 1, we do not obtain the simple Fibonacci substitution rules (2.14), but their 
second iterate, which coincides with the substitution cr, of (4.2). 

3.3. Counring systems associated wifh substitutions 
In this section, we explain how one can associate to a substitution U a counting 
system, i.e. a way of counting, or representing, the natural integers in connection with 
the substitution. This construction, introduced by Dumont [17], holds independently 
of the Pisot character of the substitution. It has been used especially to prove the 
result (2.38). 

Let U be a primitive binary substitution, acting on the alphabet A = { A ,  B},  
such that u ( A )  begins with a letter A: we shall say that A is a prefix of u ( A ) .  The 
following proposition holds: 

?b every integer k 2 1 is associated a unique counring sequence (w;, si)oGisn, 
where the w; are finite words on the alphabet A, and the si are letters of that 
alphabet, so that 

(i) The word w i - l ~ i - l  is a prefix of u ( s i ) ,  for 1 4 i 4 n; 
(E) The first word is not empty (U, f O), and the word w,s, is a prefix of u ( A ) .  
The first k letters C(k) = E , . .  . ck  of the sequence C are given by 

C ( k )  = u"(w,)u"-'( ' .  . u(wl)wU.  (3.31) 

As a first example, consider the substitution ubr which acts on a single letter A,  

(3.32) 

amrding to 

ob : A - Ab 
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where b 2 2 is a given integer. The words of the counting sequence are of the form 
wi = A€, ,  with 0 < Si < b - 1 for 0 < i < n, and E,, # 0. The representation 
formula (3.31) implies 

n 

k = b' 
i=U 

(3.33) 

which is nothing but the usual expansion of the integer k in base b, with digits { E i ) .  
The construction described above is a generalization of the concept of counting 

system to non-irueger bases. This term comes from the following observation. The 
number n of 'digits', i.e. of words { w i }  employed in the representation of the 
integer k, obeys the inequalities v," < k < which imply the following estimate: 

Ink 
In A, 

nx---. (3.34) 

This demonstrates that the Perron-Frobenius eigenvalue A, of the substitution plays 
the role of the base b of the counting system. 

As a second example, let us come back to the Fibonacci substitution, defined 
in (214). There are only two possibilities for each couple (w i , s i )  in a counting 
sequence, namely either (tui = 0,  si = A) or ( w i  = A ,  s i  = B). For each integer k, 
we define a collection of digits ( E i  = 0 or I ) ,  as being the lengths of the 
words tu;. The above construction implies E, # 0, and E i  = 0 whenever ti-, = 1. 
If t i  = 1, then wi = A, and ui (w i )  = Ai;  if ti = 0, then .'(tui) = 0. The 
formula (3.31) reads therefore 

c ( k )  = A~A>--;  . . .Af'Aio.  (3.35) 

In order to make the connection with a counting system more explicit, we notice 
that the words A,, consist of v," = Fn+2 letters, where the Fibonacci numbers F,, 
have been introduced in (2.17). As a consequence, (3.35) implies 

(3.36) 

Every integer can thus be written in a unique way on the basis of Fibonacci numbers, 
subjected to the constraints described above. For instance 10 = F6 + F3, and 
1992 = + Fi4 + FI + F,. 

3.4. Counling systems and atomic suifaces 

The purpose of this section is to show how the counting system associated to a 
substitution, described in the previous section, can be used to derive equations for 
the corresponding atomic surface S, and to show that S is a self-similar set. The 
atomic surface has been defined as the set of values taken by the hull function g(0).  
We have equivalently 

(3.37) 
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where the uk denote the fluctuations of the atomic abscissas, defined in (232), and 
the horizontal bar denotes the topological closure of a set. We also introduce the 
following subsets of the atomic surface, defined by ascribing values to the last letter 
so of the counting sequences: 
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L A  = {uk : so (k )  = A }  

RA = cA -t LA 

L E  = {uk : s , ( k )  = B) 
(3.38) 

RE = c E  + L E .  

As a matter of fact, the letter s , (k )  of the sequence corresponding to the integer 
k is nothing but Le. the next letter in the sequence. L A  (respectively, L E )  is 
therefore the part of the atomic surface S restricted to the atomic labels k so that 
the (k + 1)th letter is an A (respectively, a B). 

In more concrete terms, L A  (respectively, L B )  is the part of the atomic surface 
describing the left extremities of the A bonds (respectively, of the B bonds) of the 
structure, whereas RA (respectively, R E )  is the part of the atomic surface describing 
the right extremities of the A bonds (respectively, of the B bonds). We have 

s = L~ U L~ = R~ U R ~ .  (3.39) 

We now arrive at our main point, namely the construction of the atomic surface 
S by means of the counting theorem mentioned above. We begin by observing that 
(3.31) can be rewritten as 

C(k) = o(C(kl))wU with Z ( k l )  = U " - ' ( W , ) . . . U ( W ~ ) W  (3.40) 

This result means that the word C( k) is the transform by U of a shorter word 
C ( k , ) ,  apart from a finite number of last letters, which build the word wo, and 
can thus be listed explicitly. The integer k, is uniquely defined, since its counting 
sequence is obtained from that of k by removing the final element (wu,su). This 
observation leads us to introduce the sets 

Lf = {uk : w,(k)  = O , s , ( k )  = A }  LF = {uk : w,(k)  = O,sl(k) = B} 
(3.41) 

and to proceed along the following lines of reasoning. 
The quantities uk which are used to define the atomic surface are proportional to 
the extension of the structure in V I ,  in units k e d  by (231). Since the substitution 
U acts on V* as a multiplication by A,, we have 

Lp = A,LA Lis = X,LB (3.42) 

in the sense of pointwise multiplication. 
By keeping track of the different possible values of the final word wo in ( 3 4 ,  we 
can express the subsets L A  and LE as sums of translated copies of the rescaled 
sets Lf and Lf. 
For definiteness, consider again the Fibonacci substitution The associated 

counting system has already been described. Tible 1 gives the possible values of 
the couple (wu,so) ,  for each value of sl. liking into account all the cases listed 
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Table 1. Counling system asswiated with lhe Fibonacci substitution: possible values of 
the couple ( W O ,  so), for each value of 81. 

there, and using the values w = T - ~ ,  A, = -F’, we are led to the following 
self-similarity equations: 

L A - - (  - 7 - 1 ~ A )  U ( - ~ - I L B )  L B  = T - Z  - T - l ~ A  (3.43) 

which have for unique solution the intervals 

L A  = [-T-’ , T - 3 ]  LB = [ T T 3 , T - l ]  RA = [ o , 7 - 1 ]  RB = [ - T - * , O ] .  

(3.44) 

The atomic surface therefore consists of a single interval S = [ - F ~ ,  7-l], which has 
unit length. This result is in agreement with those exposed in section 3.2, concerning 
structures generated by the standard projection algorithm. It is worth recalling that 
the Fibonacci sequence is equivalent, up to a choice of origin, with that corresponding 
to the projection method, for a slope t = T - I ,  

Let us now turn to the general case. The same procedure yields self-similarity 
equations, analogous to (3.43), which relate the subsets L A  and LB to translated 
copies of the rescaled sets AzLA and X,LB. The general form of these equations 
will be given in (3.49). It can be argued that these formulae determine the sets LA 
and LB in a unique way, since these sets appear as the fixed points of a collection 
of contraning linear maps. 

Such invariant sets have been discussed in the mathematical literature, under 
the name of ‘perfect homogeneous sets’ (29,301. Most mathematical investigations 
concern the simpler case where the different sets occurring in the right-hand side of 
(3.49) do not overlap, whereas there is always some overlap in the physical situation of 
atomic surfaces. It is also worthwhile noticing the close analogy between the present 
problem and the construction of invariant sets by the so-called ‘iterated function 
systems’-see [31] for an introductory exposition. 

We denote by e,(S) and B-(S) the upper and lower extremities of the full 
atomic surface S, and by M ( S )  = e+(S) - B-(S) its extension, and we use similar 
notations for the subsets introduced in (3.38). These quantities are related as follows: 

e+(LB)  = et(RA) = e+(s) 

e+(RB) = Bt(S)-pA 

e - ( L B )  = e-(s) + p A  

e + ( L A )  = e,(s) - p B  

e - ( L A )  = e - (RB)  = e-(s) 

O-(RA) = O-(S) t p B  
(3.45) 

AB(LA) = AO(RA) = Ae(S) - p A  

Now consider again the integer-valued function m(e),  introduced in (3.13). Each 
interval [e,, e,] where m(0) is continuous, and hence constant, contributes to the 

AO(ZB) = A e ( R B )  = Ae(S) - p B .  
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atomic surface S for an interval of length [el-Bul. Let us anticipate that the function 
m(e) only exhibits a countable number of discontinuities. The atomic surface is 
therefore the union of a countable number of intervals, with a total length equal to 
unity. 
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We have thus Ae(S) 2 1, and two cases have to be considered: 
(i) Ae( S) = 1. In this first case, thc atomic surface S consists of a single unit 

interval, of the form S = [s,s t I], and the subsets defined above are the following 
intervals: 

(3.46) 

We have shown in section 3.2 that the standard projection method yields an atomic 
surface which is a unit interval. The converse also holds true. Indeed, let 
mu = Int(s), and 0, = Frac(s). The hull function then reads 

(3.47) 

Thii result is equivalent, up to a change of origin, to (3.74, which is characteristic of 
structures generated by the projection algorithm. 

(ii) AO(S) > 1. In this second case, which is the generic situation among 
substitutions, the atomic surface has an extension As( S) which is strictly larger than 
its intrinsic length, or Lebesgue measure, IS1 = 1. We will show on various examples 
in section 4 that it usually consists of a countable infinity of disconnected intervals, 
organized in a self-similar fashion, with a Cantor boundary. 

The above construction of atomic surfaces may seem slightly abstract. Therefore, 
we want to repeat the argument in a more concrete geometric, albeit less rigorous, 
context, and to derive in another way the formulae of the form (3.43), of which the 
subsets of the atomic surface are the unique self-similar fixed points. Let P denote 
the collection of the lattice points {Xk}, defined in (2.27). Let P A  (respectively, Pa) 
be the subset of P corresponding to the left extremities of the A bonds (respectively, 
of the B bonds). The projections of P A  and PB on the internal space V' coincide 
with the subsets L A  and LB of the atomic surface S, which have been introduced 
in (3.38). 

The sequence C which generates the points {Xk} is invariant under the 
substitution 0. It can therefore also be written in a unique way as a binary sequence, 
made of the words A, = o( A) and B,  = U (  E).  

Consider a point X of P, corresponding to the left extremity of a word A, 
(respectively, B,). Then it is clearly the left extremity of a bond of type al  
(respectively, bl), and thus we have X E Pal (respectively, X E Pbl). Moreover, 
there is a point Y in P A  (respectively, in P E ) ,  such that X = MY. These 
observations show that we have MPA c Pa',  and MPB c Pb'.  The other points 
X of P do not have a pre-image Y under the transform M. However, they are 
connected to points which do have such a pre-image, i.e. to points of the sets M P A  
and MPB,  by finite sums of the basis vectors e,, e2. These translation vectors can 
be listed explicitly. The present argument is thus equivalent to the result (3.40). 

Let us first take once more, for the sake of definiteness, the example of the 
Fibonacci sequence. Since we have A, = AB, B, = A, three cases have to be 
considered 
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X is the left extremity of an A bond, the letter A being the first one of a word 
A,: such points X describe MPA, and belong to PA. 
X is the left extremity of an A bond, the letter A being a word B,: such points 
X demibe MPB, and belong to PA. 
X is the left extremity of a B bond, the letter B being clearly the second one of 
a word A,: such points X describe el + MPA, and belong to PE. 
We thus obtain the equalities 

PA = MPAUMPB P E  =el  + MPA . (3.48) 

By projecting these formulae onto the internal space VI, where the substitution acts 
as a multiplication by A, = --i-I,  we recover the result (3.43) of the counting system 
approach. 

We end up by giving the self-similarity equations for the atomic surfaces associated 
with an arbitrary binary substitution. With the notation (2.1), and with e (A)  el, 
e( B) e2, we have 

In order to make the connection with the counting system approach more explicit, 
consider a point X, of the set P, and the counting sequence (wi,si) of the 
associated integer le. Then so (respectively, sl) indicates whether X, (respectively, 
the associated point Y )  belongs to PA or to P E ,  whereas wu encodes the lattice 
translation vector leading from M Y  to X. 

4. Binary chains: examples 

In this section, we present examples of binary substitutions corresponding to 
quasiperiodic structures which cannot be generated by the projection algorithm, and 
exhibit complicated atomic surfaces. The dimension of the boundary of the atomic 
surfaces, and its consequences on the diffraction spectra, will be evaluated in a 
quantitative way. 

4.1. The Fibonacci-squared substitution 

As a first example, let us consider all the substitution rules associated with the 
following matrix: 

M = ( :  :) 
which is the square of the matrix (2.15), corresponding to the Fibonacci substitution. 
The eigenvalues of M read A, = -i2, A, = T-,, where the golden mean r has been 
introduced in (216). We have w = T-', with the notation of (2.56). 
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Table 2. Counting syslem asswialed with Ihe Fibonacci-squared substitution 03: possible 
values of the muple ( W O ,  so), for each value of SI. 

”hmking into account all the possible orders of the letters in the words a ( A )  
and U( B ) ,  we can distinguish six different substitutions corresponding to the matrix 
M, namely 

A -+ B A A  

B - B A  

I A - B A A  

a’ : 
A + A B A  / A - A A B  

B - B A  B -  B A  

A -+ A B A  I A - P A A B  

Let us first focus our attention onto the substitution a* The associated counting 
system is described by table 2. According to the procedure of previous section, we 
can derive from those data the following self-similarity relations between the subsets 
LA and LB of the atomic surface S 

These equations can be firstly used to determine the extremities O,(LA) 
and e , ( L B ) .  We obtain the following equalities: 

This quantity is larger than unity, so that a non-trivial structure is expected for the 
atomic surface. 

Figures 3 and 4 present plots of the periodic functions f (0 )  and g(O), defined in 
(3.6) and (3.9). The data are obtained by constructing the finite chain corresponding 
to the word B7, which contains F,, = 610 atoms. The presence of internal structure 
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Figure 3. Plot of the function f(8) describing 
the sequence generated by the Fibonacci-squared 
substitution 03 .  

Figore 4 Plot of the modulation function g(6') of 
the Fibonacci-squared subslitution 03. 

in the atomic surface, down to all length scales, is revealed by the very discontinuous 
nature of the plots, which would he masked by the graphical resolution for larger 
samples. 

The self-similar character of the atomic surface, and the scaalmg properties of the 
functions f(S) and g(B), which can be suspected from the plots, can be derived in 
a quantitative way from (4.3). Figure 5 illustrates this investigation. The subsets LA 
and LB are symbolically shown as intervals, with extremities given by (4.5), as well 
as the five sets which enter the right-hand side of (4.3). In the lower part of the plot, 
the sets are folded modulo the unit period, in order to build the graph of the hull 
function g(0). This function equals g(0) = 0 on the set LB,  and on the right half of 
the set LA,  denoted L&, whereas it equals g(0) = 0-1 on the left half of the set LA, 
denoted L$,. It turns out that the unit interval gets subdivided in a natural way into 
F7 = 13 sub-intervals, among which F6 = 8 have length T - ~ ,  and F, = 5 have 
length T - ~ .  The extremities of the subdivisions are labeled as multiples of w = T - ~ ,  

modulo the unit period: '3' means thus Frac(3w), '9 means Frac(-Sw), and so on. 
We introduce three. functions .(e), b(B),  and c(0), defined as being the char- 

acteristic functions of the relevant parts, shown on the plot, of the sets L A  or LB. 
These functions are equal to unity on the associated sets, and to zero on their com- 
plements. We have found it useful to rescale the 0-axis in an appropriate way, so that 
the functions a ( @ )  and c(S) are defined on [O,T], whereas b(B) is defined on [0,1]. 
The above construction enables one to derive the following functional equations: 

.(e) = . ( F e )  = c(7-2e) 

.(e) = c(i + T-2e)  = 1 - b(+ t 4 8 )  
c(e )  - .(e) = .(I t 4 8 )  

b ( e )  = I - b ( 4 e )  = a(+  t 4 e )  = c (T- l  + F e ) .  

0 < e < 7 : 

o < e < 1 : 
(4.7) i 

The structure of the above equations is analogous to that of (Bl), (B2), which 
define a binary Cantor function x ( 0 )  on the unit interval. Inspired by the analysis 
performed there, and along the lines of the definition (B3), we introduce three 
elementary partition functions z,,(s), za(s), z c ( s ) ,  associated with the characteristic 
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Flgure 5. Construction of the modulation function and of the atomic surface associated 
with the Fibonacci-squared substitution -3. 

functions defined above. In other words, we set 

sa(.) = ClIjI8. 
i 

In this definition, the { I j }  are all the sub-intervals of [O, T ]  where the characteristic 
function a(0) is a constant (equal either to 1 or to 0), and we use similar definitions 
for zb(s )  and z c ( s ) .  

We also define the partition function z s ( s )  associated with the atomic 
surface S as 

where the subintervals {Ik} of [--I, 11 are all the connected components of the 
atomic surface and of its complementay set. We use similar definitions for the 
partition functions z L A ( s )  and z L B ( s ) ,  associated with the subsets LA and LB. The 
construction shown in figure 5 implies 

Z s ( S )  = T-" t 2 T - 4 s [ + , ( s )  t Z d 6 )  + z,(s)l 
' L A ( ' )  = 2 r - 4 d  k,(s) + Z b ( 8 )  + Z , ( s ) ]  (4.10) 

-4s 
ZLe(S)= 7 f 2 Z b ( 3 )  + Z c ( 6 )  + T - 2 5 Z , = ( S )  11 . 
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On the other hand, the functional equations (4.7) are equivalent to the following 
identities: 

which have for solution 

and hence 

(4.12) 

The expressions (4.12), (4.13) for the partition functions agree with the extensions 
of the associated sets for s = 1, as they should, namely z,(l) = r ,  ~ ~ ( 1 )  = 1, 
z,(l) = r ,  zs(l) = r ,  z L A ( l )  = 2r-’, and z L B ( l )  = 1. 

The above results diverge under the condition r4’ - 2rZS - 1 = 0. The largest 
real value of s for which this expression vanishes can be used, along the l i e s  of 
appendix B, to derive the dimension d, of the boundary of the atomic surface S, 
namely of the set of its discontinuity points We thus obtain 

= 0.915785. 
2 l n r  d, = (4.14) 

This number is very large, namely very close to unity, in accord with the large number 
of visible discontinuity points in figures 3 and 4. 

Let us now examine the consequences on the Fourier transforms of the sequence 
{ek} generated by the substitution uj,  and of the associated structure. Concerning 
the abstract binary sequence {ek}, we can study the convergence properties of the 
Parseval identity (3.8). This is indeed a very eficient way of looking at how the 
intensity is shared among the harmonics. Along the lines of appendix B, we define 
the quantity 

N 
A(N) = w(1- w) - 2 c  I C , ~ ~  

which is expected to exhibit a power-law decay of the form 

n = l  
(4.15) 

(4.16) 
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Figure 6. Double logarithmic plot of the 
quantity A(N), defined in (4 .19  showing 
the anomalous power-law fall-off of Fourier 
intensities. 

I bI 

Figure I. Comparison of the Fourier amplitudes of finite samples, with F I ~  = 987 atoms, 
for (a) lhe Fibonacci chain (smooth atomic surface), and (b) the chain generated by the 
substitution ~3 (fractal atomic surface). 

where the exponent reads 7 = 1 - d, = 0.084215, and where the period of the 
oscillatory amplitude P is the logarithm of the Perron-Frobenius eigenvalue A, = r'. 
Figure 6 presentr a log-log plot of A ( N ) ,  up to N = 104. The exponent 11 
and the period of the oscillations are found in perfect agreement with the analytic 
formula (4.16). The present example is a rather extreme one, in the sense that the 
exponent 11 is very small. Hence the intensities fall off very slowly: some 44% of the 
total intensity is still missing by considering lo4 harmonics! 

In order to give a more concrete picture of the physical consequences of the 
fractal nature of an atomic surface, we compare in figure 7 the Fourier transform 
of the binary chains generated by (a )  the Fibonacci substitution, defined in (2.14), 
and (b) the Fibonacci-squared substitution us, defined in (4.2). Both spectra consist 
of the very same dense set of Bragg peaks. The most clearly visible peaks have 
been labelled by couples (M, N )  of integers, according to (2.55), with w = T-'. 

Case (a) corresponds to a structure generated by the standard projection method, 
which possesses a smooth atomic surface, whereas case (b) is a case of a fractal 
atomic surface, with a very large boundary dimension, given in (4.14). The difference 
shows up clearly on the plots. The graph (b) exhibits less intense main diffractions, 
and a more important background noise, induced by the finite sample size ( F16 = 987 
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atoms in both cases), as well as seemingly peaks, indicated by asterisks, which are 
actually narrow regions where the maximal visible intensity falls off very slowly. 

We end up this section by coming hack to all the substitutions which are described 
by the matrix M of (4.1). The six Fibonacci-squared substitutions, given in (4.2), fall 
into two classes, according to table 3, which gives the extension AO(S) of their 
atomic surfaces. Four of them ( u ~ ,  u2, U,-, u6) have AO(S) = 1. Their atomic 
surface is therefore an interval, and the associated structures are equivalent to the 
usual Fibonacci chain, up to different choices of origin. The other two cases (u3 and 
u4) are equivalent to each other; u3 has been studied at length in this section. 

Table 3. Extension of the atomic surface associated with the six variants of the Fibonacsi- 
squared substitution. 

Substilution AO(S) 

c l r ~ 2 ! ~ 5 ~ ~ 6  1 
a 3 1 0 4  r = 1.618034 

4.2 The Fibonacci-cubed substitution 

We have shown in the previous section that the nature of the atomic surface is 
affected by changing the order of the letters in the substitution rules. In the present 
section, we want to show briefly that interchanging letters in longer substitution rules 
yields a wider variety of atomic surfaces. 

We consider the cube (third power) of the Fibonacci matrix, which reads 

M=(: :). (4.17) 

The associated eigenvalues are A, = 73, and A, = - T - ~ .  'hking into account the 
order of letters in the words U (  A )  and U( B ) ,  we distinguish 30 different substitutions 
corresponding to the matrix M, namely 

U,  : 

u4 : 

u7: 

A -  B B A A A  A - B A B A A  A -+ B A A B A  
B -  B A A  B - B A A  B - +  B A A  

A -+ B A A A B  A -  A B B A A  A -  A B A B A  
B - B A A  u 5 : i  B - B A A  

A -  A B A A B  A -  A A B B A  A -+ A A B A B  

B -  B A A  0 6 :  j 
B - B A A  1 B -+ B A A  B - B A A  u 8 : i  

A - +  A A A B B  A -  B B A A A  A -+ B A B A A  

B -+ B A A  B - A B A  Cl2 B -+ A B A  U11 : 

I A -+ B A A B A  I A i B A A A B  I A -  A B B A A  

-+ A B A  O13 : 1 
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A +  A B A B A  

B - A B A  

A -  AABAB 

B + A B A  

A -  B A B A A  

B -  A A B  

A -+ A B B A A  

B - AAB 

A + A A B B A  

B - AAB 

u16 ' 

Q1Y : 

0 2 2  : 

025:  I u26: 

' 

A +  ABABA 

B -+ AAB 

A +  AABAB 

B + AAB 

I A +  AABBA 
018 I (4.18) 

-t A B A  

A -  BBAAA 

B - A A B  QZl : 

4 2 4  : 

u27 : 

A -  BAAAB 

B - AAB 

A -  ABAAB 

B -+ AAB 

I A + AAABB 

OgO ' I B - A A B .  

Table 4. Extension of the atomic surtace associaled with the 30 variants of the Fibonacci- 
cubed subslilulion. 

Subslilution AOfSl 

For each substitution, we have evaluated exactly the extent AO(S) of the 
corresponding atomic surface, by writing and solving formulae analogous to (4.4). 
The outmmes are summarized in table 4. The 30 variants of the Fibonacci-cubed 
substitution fall into six inequivalent families, among which the class AO(S) = 1, 
corresponding to structures which can be generated by the projection algorithm, and 
five other classes with fractal atomic surfaces. We notice that four out of the six 
values of the extent AO(S) of the atomic surface are not integer-linear combinations 
of 1 and 7 .  The denominator of two comes into the game through the identity 
(1 + T - ~ ) - ~  = r / 2 .  In other words, the end points of the atomic surface S are 
generally not the projections onto VI of superspace lattice points. 

5. Ternary chains 

This section is devoted to an extension of the previous considerations to chains 
generated by substitutions acting on any number n of letters. These general 
considerations will be illustrated by two examples of ternary chains (n = 3). 
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5.1. Generalities 

Let U be a substitution acting on the alphabet A = {A'( 1 Q i 6 n)]. The associated 
matrix M is a square n x n matrix. We assume that the substitution is quasiperiodic, 
namely that M possesses the Pisot properly, and that its determinant has unit absolute 
value. A more detailed set of notations is introduced in appendix A, where the Fourier 
module of an arbitrary quasiperiodic substitution is derived. 

The superspace representation and the construction of atomic surfaces, described 
in detail in the previous sections in the binary case, can be generalized to any number 
of letters. Let C be a semi-infinite sequence left invariant by U. We construct a 
physical structure by putting atoms on a lie, at abscissas x, given by the rule (US), 
where the bond length ek can take n values e', according to the type of the kth 
letter in the sequence C. The frequencies pi of the letter types are given by 
the components of the normalized right eigenvector zl, associated with the Perron- 
Frobenius eigenvalue A,. The mean interatomic spacing reads a = 

The physical structure can be lifted as a broken line drawn on a lattice Zn, 
generated by a basis {e;(I 4 i < n)}, in an n-dimensional superspace, Rn = 
V' GB VE. The physical space VE is spanned by the eigenvector U,, whereas internal 
space V' is spanned by the other eigenvectors {zl,(2 < a Q n)}. If A, and 
A,+, are a pair of complex-conjugate eigenvalues, one considers the two-dimensional 
real eigenspace spanned by the real part, and the imaginary part, of the complex 
eigenvector z lk .  In some cases the action of M on the lattice 2" can be viewed 
as a hyperbolic transformation, leaving invariant a metric tensor, eventually up to a 
sign [32]. 

Let us now describe in more detail the modulation function g, and the atomic 
surface S, associated with the structure We denote by e! and Xi the projections 
onto internal space VI of the basis vectors e, and of the points X, of the superspace 
structure. It is shown in appendix A that the Fourier module has rank n, and that it 
is generated, in reduced units, by the densities pi of the letters A' in the sequence E. 
As a consequence, the result (3.9) is generalized as 

gipi. 

x: = g ( k p ' ,  . . . , kpn-')  (5.1) 

where the modulation g(B,, . . . , em-,) is now an (n- I)-dimensional vector function. 
It is periodic, with unit period, in each of the variables 0;. In other terms, it is a 
function on the unit (n - I)-toms T. 

Moreover, by using the identity C:=,e:, p i  = 0, it can be checked that the 
modulation assumes locally a linear functional form, namely 

g(~,,...,~,+,) = (e: - e : ) ( B i + m l ) + . . . t  (e: - e ~ - i ) ( O n - l + ~ , , - l ) .  (5.2) 

In this expression, which generalizes (3.13), m,, . . . , are integer functions 
on T, which are locally constant. 

The atomic surface S is defined as (the topological closure in VI of) the set 
of values taken by the modulation function g on the torus T. The result (5.2) 
allows one in particular to check that S tessellates Vi, i.e. that it is a fundamental 
domain for the lattice of translations generated by the (n  - 1) difference vectors 
(e: -e:) (1 < m < n - 1). This tessellation property is common to all the displacive 
modulated structures [3, IS]. It implies the physically appealing property that no atom 
appears or vanishes when the cut is given smooth 'phasonic' deformations around VE. 
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It turns out that S generically exhibits a fractal boundary, with an anomalous 
dimension d,. In the following, we illustrate the above general discussion on the 
example of ternary chains, generated by substitutions acting on an alphabet made of 
three letters { A ,  B ,  C}. We shall consider successively one example of each of the 
two kinds of ternary substitutions, namely one where the substitution matrix has three 
real eigenvalues, and one with two complex-conjugate eigenvalues. 

5.2 One example with real eigenvalues 
Our first example is that of a ternary substitution, already discussed in (331, in 
connection with a quasiperiodic tiling of the plane by three species of triangles, 
which exhibits a diffraction spectrum with seven-fold rotational symmetry. Consider 
the following 3 x 3 substitution matrix: 

A - + A B C  

ol: B -  AC 0 2 :  

C + B C  

A -  BCA 

o4 : B - AC o5 : 

C 3 B C  

A + ACB 

B - A C  03: B - A C  

C - B C  c-  BC 

A - CAB A - C B A  

B - AC o6 : B -+ AC 

C + B C  C-+ BC 

A - BAC 
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u9 : 

A - ABC 
u7 : B -+ AC 

C - + C B  

A - A B C  
u13 : B - C A  

C - B C  

A -t BCA 

u16 : B - C A  

C i B C  

A - ABC 

uIy: B - C A  

C - C B  

A - B A C  
B + AC 

C - C B  

A - ACB 
u8 : B - AC 

C - C B  

A + C A B  

ull : B - AC 

C - C B  

A - ACB 
u14: B - C A  

C -  BC 

A - C A B  

uI7 : B -+ C A  
C -  BC 

A -  ACB 

"20 : B - C A  

C - + C B  

A -  CAB 

uu : B - C A  

C - C B  

uI2 : 

uIs : 

uI8 : 

uZ1 : 

u24 : 

A - C B A  

B - AC 

C - C B  

A BAC 
B i C A  

C -  BC 

A - C B A  

B - C A  

C -  BC 

A - BAC 

B -t C A  

C -  C B  

A + C B A  

B C A  

C - C B .  

Let us choose one of these substitutions, and use it to build an infinite ternary 
sequence E, made of the letters A, B, C. The frequencies of the letter types read 

PA = t ,  - 1 p B  = 2 - t , - t 3  pc = t, . (5.7) 

The substitution acts in internal space V' as the following diagonal matriu: 

in the basis of the right eigenvectors u2 and u3 of the substitution matrix M. The 
vectors e:, which we denote here by A', B', and C', are given by the components of 
the corresponding left eigenvectors w2 and w3. We choose units so that they assume 
the simple form 

and we denote by ((, q )  the corresponding Cartesian coordinates. 

generated by 
The atomic surface S tessellates the plane VI under the lattice of translations 

U = A I -  E' v = B I -  c'. (5.10) 
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As a consequence, its area IS1 is equal to that of any unit cell of the lattice mentioned 
above. Assuming, for definiteness, that the basis used to write (5.9) is an orthonormal 
one, we obtain 

J M Luck et a1 

IS1 = IU x VI = 3i1 - 1 = 4.405813. (5.11) 

This area can alternatively be viewed as that of the projection of the unit cube 
onto VI, or that of the hexagon spanned by the three vectors defined in (5.9). 

The atomic surface exhibits an even wider morphological variety than in the 
binary case. Figure 8 shows plots of the atomic surface associated with four of the 
substitutions defined in (5.6). The plots are obtained through a pointwise construction; 
each of them consists of vfi = 10426 points. The atomic surface always seems to 
exhibit a fractal boundary. It is worth noticing that S is not a connected object in 
the case of the substitution u5. 

Let us now show how the atomic surface S can be constructed by means of the 
counting system approach, exposed in section 3.4. For the sake of definiteness, we 
consider from now on the substitution cry, which leads to a rather simple construction 
for the boundary of the atomic surface. The counting system associated with uy is 
summarized in table 5. We define the following subsets of the atomic surface: L A ,  
LB,  Lc, RA,  RB,  RC, in analogy with the binary case. The results of table 5 imply 
the following self-similarity relations: 

Flgum 8. Pointwise plots of the atomic surfaces corresponding to variants of the 
temary substitution of (5.6): (U)  substitution q, (b) substitution q, (c) substitution q 0 .  
(d) substitution 020. 
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Table 5. Counting system associated wilh the ternary substitulion 09: possible values of 
the couple (WO, so). for each value of 81. 

LA = (B' + M I L A )  U (MILB) 

Lc = (A' t B' + MILA) U (A' + MILB) U (MILc) . 
These equations, which are analogous to (3.43)-(3.49), determine the sets LA,  
L E ,  Lc, and therefore their union, which is the full atomic surface S. As a first 
consequence of (5.12), we can determine the upper and lower bounds of these sets 
along both coordinate axes. We denote by <*(S), q,(S) these bounds for the full 
atomic surface S, and use simiiar notations for its subsets. These quantities obey the 
following two equations: 

L E  = (MILA) U (Cl + MILC) 
(5.12) 

and ten other ones, which yield 

< + ( L A )  = t t ,  ( , (LB)=O F t ( L C ) = t : - t , + l  <,(S)=t? 

<-(LA) = O  

<-(s) = 1: - 511 + 2 

< - ( L E )  = .1:-5.1, t 2  <-(LC) = 1: -4.11 t 2 

q t ( L A )  = t ,  q + ( L B )  = -ti + t3 (5.14) 

q+(LC) = 1 q+(S) = 1 v - ( L  A - 2  ) - 1, - t 3  v . JLB)  = - t 3  

q-(LC)  = 0 q-(S) = - t g  . 
The extension of the atomic surface along both axes therefore reads 

A<(S) = 5t,  - 2 = 7.009689 Aq( S )  = t ,  + 1 = 1.445042. (5.15) 

We have repeated this estimation for all substitutions listed in (5.6). The outcomes 
are given in table 6. There are 11 different classes of substitution rules. We 
notice the phenomenon already observed in section 4.2, namely the occurrence of 
an integer denominator, 13 in the present case, in the expression of some of the 
values of AC(S). This denominator shows up via the identity [l - (1 - t1)4]-'  = 

Let us now describe how to construct the atomic surface S corresponding to the 
substitution U,, which has already been shown on figure 8(b). Figure 9 shows the 
projection of the unit cube of the lattice Z3 onto VI, as a hexagon spanned by the 
vectors defined in (5.9). We recall that this hexagon and the atomic surface have 
equal areas. Figure 10 shows the polygonal 'skeleton' which will allow us to build the 
atomic surface and its subsets. The vertices are labelled by the vecton introduced 

(-ti + S t ,  + 11)/13. 
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Table 6. Extension of the atomic surface associated with the 24 variants of the lernary 
substitution defined in (5.6). 

0% 017 

01): I 0 1 3  

c z r  W n  

c101 014 

-4,s~) 

Sdt - 2 = 7.0097 t3 + 1 = 1.4450 
2t: + 211 - 1 = 9.0578 

3t: + 4t l  - 2 = 14.9487 
t ;  + 1 = 1.1981 

- t i  + 1 = 0.8019 

(32tf+30tl  - 14)/13= 11.0740 

-881 016 3 1 ; + 3 1 1 - 2 =  13.1468 t: + 213 = 1.0881 

-21, + 2 = 1,1099 

2f :  + 2t l  - 1 = 9.0978 -t!  - t 3  + 2 = 1.3569 

- i ,  + 2 = 1.5550 U61 019 

07,018 

m, ql.5 
0 5 ,  021 

2t: + 3 t l -  1 = 10.8998 

(331: + 35tt - 12)/13 = 12,1706 

31: + 311 - 2 = 13.1468 

2t: + 6tl - 3 = 14.3056 

t 3  + 1 = 1.4450 

ti + t 3  + 1 = 1.6431 

-1; + 2 = 1.8019 

Figure 9. Atomic surface of the 
substitution b g :  plot of the projection 
of the unit supenpace cube onto 
internal space VI. 

Figure 10. Alomic surface of the substiiution 09: plot of the polygonal 'skeletons' of 
(U )  the subsets LA.  LB, and Lc. and ( b )  the subsets RA,  RB, and RC. 



Quasiperiodic self-similar strucwes 

M': 

1987 

A' - + A ' +  B'+ C' 

B ' - + A ' t C '  

c' + B' t c' 

SUI z are 

(5.16) 

:Iled as three types of 
arcs, a, p, and 7, spanned respectively by the vectors C', , ind Ci. This labelling 
is compatible with the partitioning into the subsets LA,  Lc, RA,  RB, RC, 
and with the tessellation under the translation vectors U a V. The self-similarity 
relations (5.12) imply that the arcs described by the vectors a, p, y are transformed 
among themselves by the inverse map (MI)-', according to 

(5.17) 

We have thus obtained an explicit iterative construction rule for the boundary of the 
atomic surface, and of its relevant subsets 

The result (5.17) shows that (MI)-' acts as a substitution on the three arcs. The 
following counting matrix can be associated with it: 

N = ( !  8) (5.18) 

Its characteristic polynomial reads Q(x) = z3 - xz - 2r  + 1. Its eigenvalues are 
therefore the reciprocals of the X,s, given in (5.5). 

The boundary of the atomic surface S and of its subsets is obtained from its 
skeleton, by applying the transformation (5.17) ad infinilum. Figure 1 1  shows the 
outcome of this construction. We obtain a fractal boundary, which is self-similar 

Figure 11. PI01 of the fractal boundary of Ihe atomic surface of the substitution up, and 
of (a) the subsels LA, L E ,  and Lc. and (b) the subsels R A ,  Rw, and RC. 
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under the linear transform M', given in (5.8). It exhibits therefore an anisotropic 
kind of self-similarity, which can be termed 'self-afinity', although this word has 
several meanings. 

The self-similarity of the boundary of the atomic surface just mentioned above has 
several kinds of quantitative consequences. Let us first determine its dimension dB. 
'lb do so, we observe that, after n iterations of the rules (5.17), the boundary is 
approximated by a polygon, with a number of sides of order tf". Each side has an 
extension in the E direction of order t;", and an extension in the 11 direction of 
order tf". The length of each side is therefore of order t;", and the total length of 
the boundary of order (tl/iz)", so that the dimension of the boundaly reads 

J M Luck el a1 

d -- In ' l  = 2.661865. 
B -  Int, (5.19) 

The above estimates have another consequence, concerning the local scaling 
behaviour of the boundary of the atomic surface around some special points, which 
we call 'flat' points. Around such points ( E " ,  vu), among which all the points marked 
on figure 10, the equation of the boundary assumes the scaling law 

l11-v"l-lE-c"l dB . (5.20) 

5.3. One example with complex eigenvalues 

Our second example is based on the following 3 x 3 substitution matrix: 

.=jH ; p) (5.21) 

which has for characteristic polynomial P( A) = A3 - Az - 1, and for eigenvalues 

A, = 1.465571 A,= A; = -0.232786t0.792552i. (5.22) 

The matrix (5.21) has the Pisot property, and its determinant is unity. The associated 
structures are therefore quasiperiodic. 

The interesting new point in the present case, with respect to all examples 
considered up to now, is the presence of a pair of complex-conjugate subleading 
eigenvalues, (A,, A3). The associated left and right eigenvectors have complex 
components, so that two complex internal eigenspaces show up in a natural way. 
We choose to denote by V' the complex linear space where the substitution U acts 
as a multiplication by the complex number A,, i.e. as the similitude composed of the 
dilatation by a factor p = IA,I = 0.826031, and of the rotation by an incommensurate 
angle 0 = Arg A, = 0.295468 x 2rr. We use from now on a complex coordinate z 
in I/', and we choose units so that the internal components of the superspace bonds, 
which are proportional to the components of w2, read 

A' E z( A )  = 1 B' E z( B )  = A, C' E z(  C) = A i .  (5.23) 
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a: 

Figure 12. Plot of the fractal boundaq of the 
atomic surface of the ternary substitution defined 
in (534). 

Figure 13. Construction of the fractal boundary 
shown in figure 12: plot of the projection of the 
unit supenpace cube onto internal space V'. 

A + B  

B - + C  

C - A C  

(MI)-': 

(5.24) 

a-+-P+r 
0 - a  
7 - P .  

and on the associated atomic surface. The counting system approach yields the 
following self-similarity relations: 

LA = XzLc LB = XzLA Lc = XzLB U ( z ( A )  + XzLc) (5.25) 

with z ( A )  = 1, in virtue of the choice of normalization (5.23). 
The atomic surface S is the union of the three sets, fixed points of the relations 

(5.25). Its fractal boundary is shown in'figure 12. This closed curve admits an 
iterative construction, analogous to that exposed in section 5.2. The starting point of 
the construction is represented on figure 13, which shows the projection onto VI of 
the unit cube of superspace. Its sides are labelled by three types of arcs, a, P,  and 7,  
spanned respectively by the vectors A', B', and C'. These arcs are transformed 
among themselves by the inverse map (MI)-', according to 

(5.27) 
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which has for characteristic polynomial Q ( x )  = x3 - x 4- 1, and for eigenvalues 
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p1 = 1.324718 p 2  = pg = -0.662359+0.562219i. (5.28) 

It is worthwhile noticing that the eigenvalues p,, of the counting matrix N are, in the 
present case, by no means simply related to the eigenvalues A, of the substitution 
matrix M. We end up by giving the expression for the fractal dimension of the 
boundary of the atomic surface. This quantity can be easily derived by observing that, 
after n iterations of the rules (5.26), the boundary is approximated by a polygon with 
a number of sides of order py,  each side having a length of order IX,ln. We thus 
obtain 

(5.29) 

The atomic surface of the present example has been recently studied in the 
mathematical literature [34], as a generalization of the so-called Rauzy fractal, 
considered in previous works 135,361. 

6. Conclusion 

Let us first stress that substitutional structures live in their own right, enhancing 
thus the importance of the real-space approach to the study of aperiodic structures. 
In this work we have focused our attention on the nature of the atomic surfaces 
associated with self-similar chains, generated by substitutions. Our position is 
somewhat analogous to that of experimentalists, who analyse structures in real space, 
and lift them up in a higher-dimensional superspace, in order to sort out their 
regularity. In contrast with the latter, we do not start from diffraction spectra to 
explore superspace properties. We rather use directly the definition of structures in 
terms of substitutional rules, and draw conclusions concerning, among other aspects, 
their Fourier transform. 

The classes of examples studied here suggest that generic quasiperiodic 
substitutions correspond to fractal atomic surfaces. The main observable consequence 
is the anomalously slow fall-off of the intensities of high harmonics, which we have 
related to the boundary dimension dB of the atomic surface, at least in the simple 
case of binary chains. This phenomenon will certainly influence physical properties, 
such as the width of gaps in electronic spectra, to mention a simple example. 

The Pisot nature of a substitution is afirst criterion which demarcates, among one- 
dimensional structum, those which possess Brag  peaks from the other ones. The 
unit determinant condition is a second criterion, between quasiperiodic structures, i.e. 
diffraction spectra which admit a simple indexing scheme, namely n integers, one per 
superspace coordinate, and those with infinitely many independent Bragg diffractions. 
Restricting the analysis to quasiperiodic substitutions, the present work emphasizes a 
third criterion, which discriminates between the structures with regular atomic surfaces 
from those with fractal atomic surfaces. The former ones, such as those generated 
by the usual projection method, have simpler Fourier spectra than the latter ones, 
with a faster fall-off of satellite intensities. This criterion amounts, in the binary case, 
to the computation of the extension Ae( S) of the atomic surface in internal space. 
One could have hoped to find a simple way of realizing, by mere inspection of the 



Quasiperiodic self-similar structures 1991 

substitution rules, whether the associated atomic surface has a fractal or a regular 
boundary. The present study demonstrates that no such simple criterion exists in 
general. 

The following classification thus emerges for substitutional structures, completing 
previous studies. As far as long-range translational order is concerned, or equivalently 
the nature of diffraction spectra, there are three consecutive demarcation lines: 

(i) Pisot against non-Pisot structures, i.e. Bragg peaks against continuous Fourier 
transform; 

(ii) among Pisot structures, quasiperiodicity, i.e. a finite-dimensional superspace, 
against limit-periodicity or limit-quasiperiodicity, i.e. an infinite-dimensional internal 
space; 

(E) within quasiperiodic structures, smooth atomic surfaces, against atomic 
surfaces with fractal boundaries. 

Going down the above dichotomies, one meets more and more ordered structures, 
as testified by the 'sharpness' of their diffraction spectra. This progression also goes 
in the direction of less generic substitutions. Looking in retrospect to the discovely 
of incommensurate structures, then of quasicrystals, one realizes that nature offers 
instances of structures which, though highly organized, pertain to increasing levels of 
complexity. Hence, at least on logical grounds, one might he tempted to imagine that 
the next class of structure to be discovered with long-range order would be more 
complex than the previous two cases. Quasiperiodic structures with fractal atomic 
surfaces represent one plausible step in this direction. They should exhibit a richer 
diffraction spectrum, with a larger number of visible satellites. This plausibility is 
strengthened by the fact that, as mentioned in the introduction, the above ideas have 
been extended to tilings. This will be described in a forthcoming publication. 
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Appendix A. The Fourier module of a genenl quasiperiodic substitution 

In this appendix we present a self-contained algebraic derivation of the Fourier 
module associated with an arbitrary quasiperiodic substitution. Let U be a substitution 
acting on an alphabet which consists of n letters, A = {Ai (1 < i < n)}. Let M be 
the associated matrix. It is an n x n square matrix, with elements Mi, j  positive or 
zero. We assume the following properties: 

(i) The substitution U is primitive, i.e. all entries of M k  are strictly positive, for 
some integer IC 

(i) U has the Pisot property, which means that, among the n eigenvalues, i.e. the 
roots of the characteristic polynomial 

1, so that the Perron-Frobenius theorem holds. 

P( A )  = det( A 1  - M) = A" + S , - ~ A ~ - *  + . . . + s,A + so ('4.1) 

the Perron-Frobenius eigenvalue A, is real and larger than unity, whereas the other 
eigenvalues A, (2 < a < n )  are smaller than unity in modulus. 
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(I) det M = fl. 
The above properties imply that the characteristic polynomial is irreducible 

over the integers, and thus that the Perron-Frobenius eigenvalue is an irrational 
algebraic integer of degree n, and that the other eigenvalues are its algebraic 
conjugates. Indeed, if we had P(A) = El (A)%(A) ,  with polynomials R, with 
integer coefficients, each of them would satisfy R,(O) = fl, and thus have at least 
one root larger than or equal to unity in modulus, in contradiction with the Psot 
ProPeq. 

Let us introduce a few useful notations. We denote by v, the right Perron- 
Frobenius eigenvector, associated with the eigenvalue A,, and normalized by the 
condition 

The component (U,); represents the frequency pi of the ith letter type A' in any 
infinite sequence C which is invariant under U. In a similar way, we denote by W ,  

the left Perron-Frobenius eigenvector, normalized so that 

n 
Wl. u1 = C(W1); ( U 1 ) i  = 1 I 

i= l  
('4-3) 

The component (tu,)' represents the bond length e' associated with the ith letter 
type A', in units of the mean interatomic distance a, under the condition introduced 
in section 2.1, namely that the physical structure is the projection onto the physical 
space VE of the superspace lattice points { X k } .  

We introduce the right and left eigenvectors va, w, corresponding to the other 
eigenvalues A, (2 < a 4 n), by taking the algebraic conjugare expressions of the 
Perron-Frobenius eigenvectors U, and W ,  defined above. This means that we replace 
successively A, by the other eigenvalues A, in the expressions for the componentr 
(U,)' and (w,); .  This procedure is well defined, since these components are rational 
functions of A,. We have therefore 

n 

where 6a,b is the Kronecker symbol. For a = 6, (A.4) holds since the conditions 
(A.2), (A.3) are preserved under algebraic conjugation. For a # b, (A.4) expresses 
the well known orthogonality between left and right eigenvectors with different 
eigenvalues. This property can be proven in an elementary way as follows: Aa.w;ub = 
(w,M) = W ,  * (Mvb) = X ~ W ,  * vb. 

Consider now the matrices Pa (1 < a < n), defined by 

( P A , j  = ( U a ) i  (%) j  

The identity (A.4) implies 

(-4-5) 



Quasiperiodic se[f-similar smctures 

and therefore 
n 
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These last equations express that the Pa form a complete set of projectors. Their 
right (respectively, left) action projects onto the right (respectively, left) eigenspaces 
of the substitution matrix M. 

Let us turn to the analysis of the Fourier transform of the geometrical structures 
which can be constructed from the substitution Q. We define a reduced wavevector 
I as follows: 

2 T X  
Q = -  

a 

The Fourier module, denoted by 3, is defined as the set of values of I 

corresponding to Bragg peaks. Our aim is to prove that 

(-4.9) 
F = , Z { p ' ,  2iT l < i < n } .  

This simple and general result means that the Bragg peaks take place at reduced 
wavevectors I given by integer combinations of the frequencies p' = (q); of the 
various letter types. 

We now present a lengthy, but self-contained and elementary proof of the 
fundamental result (-4.9). First, we observe, along the lines of [4], and of the analysis 
of section 24, that the reduced wavevector I belongs to 3 if, and only if, the 
phase factors which occur in the recursion relations between Fourier amplitudes go 
asymptotically to unity. With the notations introduced above, these conditions read 

I (wl); Ay + 0 mod 1 m i c a  (-4.10) 

for 1 < i < n, independently of the choice of the elementary bond lengths e'. We 
have therefore to study a set of n equations of the form 

y X y - 0  mod1  m i o o .  (A.11) 

Let us proceed as we did in section 2.4 in the binary case. We introduce the notation 

The T, are integers, which obey the following (n -t 1)-term linear recursion relation: 

Tm+n + ~~-1T,+,-1+ ' .  + ~lT,+l+ SOT, = 0 (A.13) 

where s", . . . , s , - ~  are the coefficients of the characteristic polynomial, introduced 
in (A.1). Then, for each value of y to be considered, we set 

Y A Y  = a, t 6, (-4.14) 
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with a, integer, and 16,l < f .  Equation (A.ll) is then equivalent to the condition 
6, + 0. The recursion relation (A.13) leads to 
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a,+, - S,-la,+,-l-. I '  - slant1 - Suam 

= -(6,,,+,,- Sn-1 6 mtn -1  - , , . - ~16,+,1 - 4,) -+ 0. (A151 

Since the left side of this last equation is an integer, it vanishes identically for m 
large enough. We thus have 

antn - %-lamfn-1 - .  ' ' - slamtl - soam = 0 m > N W 6 )  

for some fixed integer N .  Equation (A.16) expresses that the sequence aN+m obeys 
the linear recursion relation (A13), and can therefore be expanded on the basis 
ITmtk (0 < k < n - I)} of solutions of that recursion. We thus obtain 

aN+m = + clTm+l +""+ Cn-lTm+n-l (A.17) 

where the C, are unknown coefficients. Since the difference between T,,, and A;. 
goes to zero for m + 00, (A.17) implies 

y = ATN(C, + C,A, + . , , + Cn-,AY-1) . (A18) 

The coefficients C, of the expansion (A.17) are to be determined from the n 
initial values of the recursion (A16), i.e. from the following linear system: 

= C"T" + CIT, $. 
= c"T ,+c IT2+~~ .+c" - ,Tn  

+ Cn-ITn-, 

(A19) ... i aNtn - i  % = C"Tn-, + CITn + ...+ Cn-iTzn-z. 

We will not have to solve (A.19) in an explicit form. Let us just notice that its 
solution is such that the numbers C, are all rational. The sum between parentheses 
in the right-hand side of (A.18) belongs therefore to the rational number field &(A,) 
of the Perron-Frobenius eigenvalue A,, which is defined as the set of rational linear 
combinations of the numbers A t  (0 4 k < n - 1). 

Moreover, we have so = (-1)"det M = il, so that 

I - = - S " ( ~ ; - " ~ l ~ ; - ~ + " ' + S ~ ~ l + S 1 ) ,  
A I  

This relation permits us to show that y also belongs to Q( A,). Hence the reduced 
wavevectors 5 of the Fourier module are among the numbers such that y = x (tol), 
is in the number field &(A,), for 1 < i < n. This last statement is equivalent to 
saying that x itself is in that number field. 

There is a rational basis of Q( A,) which is especially adapted to the present study, 
namely the set of the n frequencies p' = of the letter types. Let 

where the coordinates S j  are n rational numbers. We are thus left with the problem 
of determining for which sets of rational coordinates { t j }  the n conditions (A.10) 
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are simultaneously fulfilled. 'Ib do so, we notice first that, for x of the form (A.21), 
the product 2. (tul); Ay is the term corresponding to a = 1 in the following sum: 

Because of the Pisot property, we thus have x (tul); Ai" B Si,,, up to exponentially 
small corrections. On the other hand, the sums defined in (A.22) can be evaluated 
in closed form, by means of the identities (k5)-(&7). We thus obtain 

Since the sums Si,, are integer combinations of the fixed rational numbers { E , } ,  
the conditions (A.10) amount to requiring that these sums are exactly integers, for 
m large enough. On the other hand, the Ej can be obtained from (A.23) by matrix 
inversion. They read therefore 

Since the determinant of the substitution matrix is f l ,  the inverse matrix M-I 
has integer entries. We thus conclude that the coordinates { t j }  of the reduced 
Bragg wavevectors in the basis (A.21) are integers. This completes the proof of the 
result (A.9). 

Appendix B. The hinary Cantor function 

This appendix is devoted to the study of a binary Cantor function x ( 6 ) ,  with the same 
kind of scaling properties as the characteristic functions associated with the fractal 
atomic surfaces of binary Structures, used in the body of this paper. This Cantor 
function has the advantage of allowing an explicit analysis. 

Let a be a fixed parameter in the range 0 < a < 1 The function x ( 6 )  is defined 
on the unit interval [0, I] by the following two properhes: 2: 

x ( 6 )  = 1 for a < 6 < I - a  (B.1) 
~ ( 0 )  = 1 - x ( a 0 )  = 1 - x(1- a6) for 0 < 6 < 1. (B.2) 

By inserting (B.l) into (B.2), we get x ( 6 )  = 0 on both intervals [az ,a  - a'] 
and [I - a + a2,1 - d]. This procedure can be iterated. At the lcth iteration, 
the domain where the function x is defined is increased by 2k intervals of length 
(1 - 2a)ak each. The limit sum of these lengths equals unity, so that (B.l), (B.2) 
define a function x ( 6 ) ,  which equals 0 or 1 everywhere, except for a zeromeasure 
set C of discontinuity points. 

Figure B1 shows a plot of the Cantor function x ( 6 ) ,  for a = 0.4. It is clear from 
the construction that C is a self-similar Cantor set. In order to evaluate its (fractal) 
dimension, let us introduce the following 'partition function': 
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3 0.5 - 1  
-0.5 

0 0.2 0.4 0.6 0.8 1.0 
Figure B1. Plot of the Cantor function 
studied in appendix B, for n = 0.4. 

O /  0 

In this definition, the sum runs over all intervals on which the function x ( 0 )  is a 
constant, and lIil denotes the length of the interval I,. The function ~ ( s )  is thus the 
Mellin transform of the length distribution of these intervals. The definition (B.3) 
implies the normalization z ( s )  = 1, and it is expected to converge for large enough 
values of the real part of the complex parameter s. The relations (BJ), (B.2) imply 
the following identity: 

z ( s ) = ( 1 - 2 0 1 ) ~  + 2 a " ( s )  (B.4) 

which is obtained by writing separately the contribution of the central interval 
[a, 1 - a], and those of both lateral regions. Equation (B.4) yields 

(1  - 2ay 
Z(6) = 

1-2018 . 
The largest real singularity of that expression is to be identified (see e.g. [37]) with 
the dimension d, of the set C, which is the boundary of the intervals { I i } ,  whence 
the notation. We thus obtain 

In 2 
In a dB = 

The dimension d ,  increases from zero to unity, as the parameter a is varied from 
0 to $. The result (B.6) could have been derived by more elementary means. Indeed, 
the graph of the function x consists, apart from the central interval, of two parts 
which are simiiar to the whole graph, reduced by a scaling factor of a. The present 
approach has the advantage of being systematic; it will be applied to more complex 
situations in the body of this article. 

Let us now turn to the Fourier analysis of the binary Cantor function. We start 
by extending the function x ( 0 )  to the whole real 0-axis by,requiring that it has unit 
period. It can therefore be represented as a Fourier series of the form 

where the coefficients cN read 
1 

cN = G(2nN) with G(q) = 1 X(0)e-iqSdO. (B.8) 
U 
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We can derive from (B.l), (B.2) the following equation for the Fourier 
transform G( q): 

1 - e49 
G(q) = - - a [ l +  e-i('-a)*]G(aq). (B.9) 

iq 

The symmetry of the function x under the exchange of 0 into (1 - 0) suggests that 
we should set 

G(q) = e-'91zH(q). (B.10) 

H ( q )  is then a real and even function, for which (B.9) becomes 

2 q  (1  - H ( q )  = X ( q ) + Y ( q ) H ( a q )  X ( q )  = -sin- Y(q) = -2acos 
Q 2  2 '  

(B.ll) 

Since Y(0) = -2a is less than unity in absolute value, (B.11) admits the following 
solution: 

(B.12) 

which has the convergence properties of a geometrical series. 
Let us focus our attention on the behaviour of the Fourier transform for large 

values of the wavevector q. If the function x(0) had only one discontinuity point, 
or a finite number of them, one would observe the simple power laws G(q) - l /q ,  
and cN. - 1 /N.  In the present case, the binary Cantor function has an infinity of 
discontmuity points, so that a slower decay can be expected. Let us define the Fourier 
intensity S( q) through 

and consider the follo%ring integral 

(B.14) 

The behaviour of this quantity for q -+ 00 can be derived from (B.11) in the following 
way. By squaring both sides of that functional equation, and neglecting the X-function 
which has a fast decay, as well as interference terms which oscillate rapidly, we obtain 

C ( q ) w 2 a  C(aq) .  (B.15) 

This approximate relation shows that the integrated Fourier intensity obeys the 
following scaling law for large wavevector: 

(B.16) 

where the exponent 

ln(2a) 
In 01 

' l = l - d g = -  (B.17) 
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-2.0 

-4.0 1 , , , , , , , 1 Figure 82. Double logarilhmic plol of the 
quanlily A ( N ) ,  defined in (B.ZO), showing 
the anomalous power-law fallaff of Fourier 

4 5 6 1 8 9 1 0  

In N inrensilies. 

is simply related to the boundaly dimension d,, introduced in (B.6). The amplitude 
PI which enters the result (B.16) is a periodic function of its logarithmic argument, 
with unit period, which reflects the similarity ratio a of the Cantor function in real 
space. 

If the function under study had only finitely many discontinuities, we would 
have d, = 0, in accord with the laws mentioned above. The more singular the 
boundaly is, the larger its dimension d,, and the slower the mean decay of its 
Fourier transform. 

An eficient way of viewing the exponent 7 consists in studying the convergence 
of the sum involved in the Pa r sed  identity, recallcd in (3.8). In the present case, 
since we have x ( 0 )  = x(0)2 almost everywhere, the Parsed formula reads 

1 
1+2a 

tm 
l C N I Z  = C" = -. 

N=-m 

Let us introduce the following quantity: 

(B.18) 

(B.19) 

which represents the Fourier intensity which is missed if one considers only the first 
N harmonics of the Cantor function. The scaling law (B.16) implies that a similar 
power law holds for A ( N ) ,  namely 

(B.20) 

This approach will be used in the main body of this paper. It is illustrated on 
figure B2, which shows a log-log plot of A(N).  Both the power law, and the 
periodic oscillations around it, are found in accord with (8.20). 
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